Estudio cartográfico del volcán Popocatépetl, Puebla, Méxicos volumen edificio volcánico, aceleración de la gravedad y zonas de riesgo para la población

> Rogelio Ramos Aguilar, Patricia Máximo Romero Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla

María de la Cruz Vázquez García Bufete de Ingeniería en Telecomunicaciones y Sistemas

> Ana Guadalupe Martínez Ortiz Colegio de Ingeniería Mecánica y Eléctrica, Benemérita Universidad Autónoma de Puebla

> Daniel Hernández Andrade Colegio de Ingeniería Topográfica y Geodésica, Benemérita Universidad Autónoma de Puebla

Dora Marcela Benítez Ramírez Universidad Pedagógica y Tecnológica de Colombia

Resumen

En este estudio se muestra el cálculo del volumen del volcán Popocatépetl y la aceleración de la gravedad en puntos específicos del edificio volcánico para la identificación de las poblaciones que se encuentran en riesgo. El volumen se calculó a través de las curvas de nivel de la carta E14B42 de INEGI. El estudio gravimétrico se realizó a través del análisis de las anomalías de Bouguer y las anomalías al aire libre. También se calculó la distancia que existe del punto central del cráter a las comunidades más importantes que se encuentran dentro del perímetro de riesgo de 25 km, tomando como referencia las coordenadas de proyección UTM (Universal Transversa de Mercator) zona 14Q teniendo como resultado la elaboración de base de datos de 64 localidades así como el respectivo perfil topográfico con pendiente promedio.

Palabras clave

Cartográfico, cráter, riesgo, aceleración, volcán.

Abstract

This study shows the calculation of the volume of the Popocatepetl volcano and the gravity acceleration on specific points of the volcanic building for the purpose of identification of the populations that are at risk. The volume was calculated through the level curves of the map E14B42 by INEGI. The gravimetric study was carried out through the analysis of the Bouguer's anomalies and outdoor anomalies. The distance from the central point of the crater to the most important communities within the 25 km perimeter of risk was also calculated, taking as reference the projection coordinates UTM (Universal Transverse Mercator) zone 14Q resulting in the elaboration database of 64

locations as well as the respective topographic profile with average slope.

Key words

Cartographic, crater, risk, acceleration, volcano.

Introducción

El volcán Popocatépetl se localiza en el extremo sur de la Sierra Nevada, cordillera volcánica de edad Plio-Cuaternaria situada en el sector centro-oriente del Cinturón Volcánico Transmexicano (CVTM). (Figura 1). La composición geoquímica de sus productos es dacítico-andesítica (Franco-Ramos et al., 2017).

Figura 1. Ubicación del Cinturón Volcánico Transmexicano.

En términos geológicos el volcán Popocatépetl es joven con unos 730,000 años. La evolución del volcán consta de al menos tres etapas de construcción y destrucción de su edificio volcánico, el primero fue hace 1,000,000 de años como volcán primitivo o Nexpayantla y su colapso fue aproximadamente hace unos 200,000 años. La segunda etapa es conocida como El Ventorrillo con estimación del colapso de entre 50,000 a 30,000 años, aunque trabajos recientes sugieren 23,000 años (Macías, 2005). Desde entonces la acumulación de flujos de lava y depósitos piroclásticos han edificado el cono actual del Popocatépetl (Franco-Ramos et al., 2017).

El volcán Popocatépetl de acuerdo con Espinasa-Pereña, R. (2012) y Martin Del Pozzo A. L. et al., (2018) es uno de los volcanes más peligroso del mundo debido a la cantidad de personas que habitan en una distancia menor a 100 Km y al historial de erupciones explosivas.

Después de 70 años de inactividad el 21 de diciembre de 1994 comenzó con actividad fumarólica. (Sosa-Ceballos et al., 2012). Un análisis de la morfología del volcán y su evolución geológica muestran que se trata de un volcán que ha estado activo por más de medio millón de años y que ha presentado varias etapas de crecimiento como se ve en la figura 2, (Espinasa-Pereña, R., 2012).

Figura 2. Identificación de los edificios de las estructuras geológicas cercanas al volcán Popocatépetl.

De acuerdo con Espinasa-Pereña, R. (2012) un aspecto a resaltar de la morfología del Popocatépetl es la asimetría en las pendientes de las laderas. El flanco este presenta una pendiente mucho más acusada, lo que favorecerá el incremento de velocidad de cualquier flujo gravitacional (piroclástico, de escombros, de lava). Las fuertes pendientes no son el único factor de riesgo, el material balístico, la dirección y velocidad del viento que influye en el arrastre de cenizas también lo son (Siebe, C et al 1996). De acuerdo al modelo de viento horizontal, basado en radio-sondeos globales de 15 años (1980-1995) de la base Global Gridded Upper Air Statistics (GGUAS) del European Centre for Medium Range Weather Forecast (ECMWF), se identificó que, en la zona de influencia del Popocatépetl, el campo de viento presenta variaciones a diferentes altitudes.

De 5,000 a 10,000 msnm, de octubre a mayo los vientos van hacia el este, este-noreste y noreste; de junio a septiembre hacia al oeste con variaciones al sureste, sur y suroeste. De 10,000 a 20,000 msnm, en los meses de octubre a abril los vientos van hacia el este y de junio a septiembre hacia el oeste y suroeste, pero en mayo la dirección de los vientos es variables. Arriba de los 20,000 msnm, de octubre a marzo los vientos van hacia el este y sureste, de abril a noviembre hacia el oeste; pero en los meses de marzo, noviembre y diciembre el viento también puede ir hacia el noreste.

La velocidad promedio del viento por debajo de los 20,000 msnm, es de 5 m/s, aunque en enero llega a presentar velocidades de 15 m/s. Arriba de los 20,000 msnm, el viento tiene velocidades entre 10 a 15 m/s, y en los meses de julio y septiembre puede alcanzar los 30 m/s, (Delgado et al., 2013).

Materiales y métodos

El presente trabajo busca contribuir a las

zonas de riesgo, ubicadas en los alrededores del volcán Popocatépetl limitando la zona de estudio en un radio de 25 km, en el cual se localizó a través de imágenes satelitales 64 localidades en latente riesgo que en base a los históricos han tenido daños al menos por ceniza.

Para el desarrollo del trabajo se utilizaron imágenes satelitales (Google Earth), Software Auto CAD y Civil CAD, programación Macro de Excel, entre otras herramientas.

Para el cálculo del volumen del edificio y cráter volcánico se consideró un diámetro de 7579.864 m en la base y un cráter de radio 798.254 m, además de un modelo de elipse con semieje mayor de 795 m y semieje menor de 595 m, con una altura máxima de 5413.16 msnm y mínima dentro del diámetro de la base de 3900 msnm para este análisis, por considerar una geomorfología de datos más práctica en cuanto a los datos manejados; se obtuvo una nube de puntos para su procesamiento en CAD mediante la importación de puntos Google Earth a CAD, existiendo una correlación exacta, como se puede ver en la figura 3, es decir se corrigió la triangulación con cortes de 50 a 100 m de desnivel y se delimito la base del edificio volcánico.

Figura 3. Nube de puntos, triangulación y vista 3D del levantamiento.

La metodología para calcular el volumen fue a través de curvas de nivel, iniciando su digitalización sobre la carta del INEGI, 2015 con clave E14B42 y con escala 1:50 000. Una vez digitalizadas las curvas de nivel, (véase figura 4) se procedió al cálculo del volumen del edifico volcánico.

Figura 4. Digitalización de Curvas de Nivel a escala 1:50000 para determinar volumetría.

Para calcular el volumen a través de curvas de nivel de acuerdo con Alcántara (2014) se ocupó la fórmula 1 que nos proporcionará un volumen parcial entre dos curvas, es decir para tener un volumen total se necesita de un volumen acumulado como la sumatoria de los volúmenes parciales contiguos.

$$V = \left[A_1 + A_2\right] \left[\frac{h}{2}\right] (1)$$

Donde A1 y A2 son las superficies delimitadas por curvas de nivel contiguas, h es la equidistancia entre curvas de nivel. Por la cantidad de curvas de nivel generadas (figura 5) a cada 20 metros de desnivel entre la mínima 3900 msnm y la máxima 5413.16 msnm, se realizó una macro programada para el cálculo automático del volumen acumulado, como se puede analizar en la tabla 1.

Figura 5. 3D de la digitalización de curvas de nivel.

Zonas de riesgo

Para las zonas de riesgo del estudio se delimitó un radio de 25 km a la redonda tomando como referencia el centro del cráter con coordenadas X=539567.00, Y=2103376.00, Z=5169.16 como se muestra en la figura 6, estipulado por las autoridades de Protección Civil de la República Mexicana.

Figura 6. Zonas de riego en un radio de 25 km.

Aceleración de la gravedad

Para el cálculo de gravedad local y las anomalías se aplicó un sistema de información de gravedad desarrollado por el instituto de metrología de Alemania Physikalisch-Technische Bundesanstalt (PTB) que permite obtener la aceleración de gravedad en cualquier lugar del mundo mediante un modelo basado en la misión SRTM del Transbordador Espacial (Shuttle Radar Topography Mission) haciendo uso de la latitud, longitud y altitud del punto en cuestión que para este caso fue la localización de cada zona de riesgo dentro del radio de 25 km. (Gravity Information System, 2017).

Resultados y discusión

Para el cálculo automático solo se requirió la captura del área correspondiente a cada curva de nivel, el resultado del volumen dentro de las curvas cerradas fue de $15,509,185,329.690 \text{ m}^3 (15.51 \text{ km}^3)$ como se ve en la tabla 1.

De manera detallada las áreas se obtuvieron en AutoCAD después de digitalizar las curvas de nivel de la carta 1:50 000, se captura en la macro en la columna ÁREAS, la columna A1+A2 toma como A2 a la curva 5+380 puesto que esta es nuestra referencia inicial y no hay forma de calcular un volumen es por ello que se muestra tanto volumen parcial como acumulado, valores de cero, no así en la curva 5+360, ya que $A1=9456.900 \text{ m}^2 \text{ y } A2=35161.24 \text{ m}^2 \text{ y una}$ distancia promedio entre curvas de 10 m (columna 4), el volumen parcial se genera como en la fórmula 1, sumatoria de áreas contiguas por un medio de la distancia que nos da 446181.440 m^3 de volumen parcial que en este caso será igual al acumulado debido a que los volúmenes parciales anteriores son cero, a diferencia de la curva 5+340 ya que este volumen acumulado es la suma del acumulado anterior más su volumen parcial correspondiente a la curva 5+340 dándonos como resultado un volumen acumulado de $1,562,901.640 \text{ m}^3$ de esta forma se calcula de manera concatenada para obtener el volumen total del edificio considerando solo curvas cerradas.

En la tabla 2 se observa la ubicación de las localidades que están dentro del radio ya

			Dist	VOL. VOL.		
CURVA	ÁREAS	A1+A2	/2	PARCIAL	ACUMULADO	
	\mathbf{m}^2	\mathbf{m}^2	m	\mathbf{m}^3	\mathbf{m}^3	
5+413.00	9456.900	9456.900	0	0.000	0.000	
5+360.00	35161.24	44618.144	10	446181.440	446181.440	
5+340.00	76510.78	111672.020	10	1116720.200	1562901.640	
5+320.00	126204.8	202715.591	10	2027155.910	3590057.550	
5 + 300.00	178235.3	304440.095	10	3044400.950	6634458.500	
5+280.00	238155.7	416390.950	10	4163909.500	10798368.000	
5+260.00	301838.8	539994.447	10	5399944.470	16198312.470	
5+240.00	383776.5	685615.237	10	6856152.370	23054464.840	
5+220.00	460969.9	844746.363	10	8447463.630	31501928.470	
5+200.00	550312.3	1011282.155	10	10112821.550	41614750.020	
5+180.00	657747	1208059.273	10	12080592.730	53695342.750	
5 + 160.00	1004606	1662353.483	10	16623534.830	70318877.580	
5+140.00	1124627	2129233.944	10	21292339.440	91611217.020	
5+120.00	1244303	2368930.189	10	23689301.890	115300518.910	
5+100.00	1405675	2649977.547	10	26499775.470	141800294.380	
5+080.00	1512288	2917962.930	10	29179629.300	170979923.680	
5+060.00	1617782	3130070.077	10	31300700.770	202280624.450	
5+040.00	1749306	3367087.836	10	33670878.360	235951502.810	
5+020.00	1893019	3642325.325	10	36423253.250	272374756.060	
5+000.00	2042639	3935658.422	10	39356584.220	311731340.280	
4 + 980.00	2201852	4244490.773	10	42444907.730	354176248.010	
4+960.00	2365205	4567056.426	10	45670564.260	399846812.270	
4 + 940.00	2570260	4935464.295	10	49354642.950	449201455.220	
4 + 920.00	2772240	5342499.840	10	53424998.400	502626453.620	
4 + 900.00	22971019	25743259.115	10	257432591.150	760059044.770	
4 + 880.00	3182173	26153191.670	10	261531916.700	1021590961.470	
4 + 860.00	3393918	6576090.869	10	65760908.690	1087351870.160	
4 + 840.00	3631692	7025610.639	10	70256106.390	1157607976.550	
4 + 820.00	3869027	7500719.854	10	75007198.540	1232615175.090	
4 + 800.00	4122623	7991650.159	10	79916501.590	1312531676.680	
4 + 780.00	4337708	8460330.910	10	84603309.100	1397134985.780	
4 + 760.00	4596592	8934300.153	10	89343001.530	1486477987.310	
4 + 740.00	4878553	9475145.150	10	94751451.500	1581229438.810	
4 + 720.00	5159936	10038489.091	10	100384890.910	1681614329.720	
4+700.00	5474608	10634543.823	10	106345438.230	1787959767.950	
4 + 680.00	5762636	11237243.958	10	112372439.580	1900332207.530	
4 + 660.00	6072470	11835106.328	10	118351063.280	2018683270.810	
4 + 640.00	6406598	12479068.192	10	124790681.920	2143473952.730	

Tabla 1. Cálculo de volumen del volcán Popocatépetl

			Dist	VOL.	VOL.
CURVA	ÁREAS	A1+A2	/2	PARCIAL	ACUMULADO
	\mathbf{m}^2	\mathbf{m}^2	m	\mathbf{m}^3	\mathbf{m}^3
4 + 620.00	6759722	13166320.415	10	131663204.150	2275137156.880
4 + 600.00	7152763	13912485.770	10	139124857.700	2414262014.580
4+580.00	7481074	14633836.827	10	146338368.270	2560600382.850
4 + 560.00	7861115	15342188.891	10	153421888.910	2714022271.760
4 + 540.00	5257061	13118176.583	10	131181765.830	2845204037.590
4+520.00	8656787	13913848.329	10	139138483.290	2984342520.880
4 + 500.00	9116350	17773137.329	10	177731373.290	3162073894.170
4+480.00	9503181	18619531.522	10	186195315.220	3348269209.390
4 + 460.00	9951617	19454798.150	10	194547981.495	3542817190.885
4+440.00	10430004	20381621.172	10	203816211.715	3746633402.600
4+420.00	10944111	21374115.415	10	213741154.150	3960374556.750
4+400.00	11520997	22465108.312	10	224651083.120	4185025639.870
4+380.00	12024091	23545087.990	10	235450879.900	4420476519.770
4 + 360.00	12638515	24662605.933	10	246626059.330	4667102579.100
4+340.00	13229713	25868228.374	10	258682283.740	4925784862.840
4+320.00	13855358	27085070.761	10	270850707.610	5196635570.450
4+300.00	14608080	28463437.385	10	284634373.850	5481269944.300
4 + 280.00	16267576	30875655.515	10	308756555.150	5790026499.450
4 + 260.00	16012891	32280466.301	10	322804663.010	6112831162.460
4+240.00	16819517	32832408.025	10	328324080.250	6441155242.710
4+220.00	17637405	34456922.452	10	344569224.520	6785724467.230
4 + 200.00	18561837	36199241.596	10	361992415.960	7147716883.190
4 + 180.00	19362744	37924580.334	10	379245803.340	7526962686.530
4 + 160.00	20314914	39677658.162	10	396776581.620	7923739268.150
4 + 140.00	21340455	41655369.755	10	416553697.550	8340292965.700
4+120.00	22507098	43847553.084	10	438475530.840	8778768496.540
4 + 100.00	23820120	46327217.553	10	463272175.530	9242040672.070
4 + 080.00	25015789	48835908.650	10	488359086.500	9730399758.570
4 + 060.00	26372158	51387946.920	10	513879469.200	10244279227.770
4 + 040.00	27906474	54278631.926	10	542786319.260	10787065547.030
4 + 020.00	29349995	57256468.600	10	572564686.000	11359630233.030
4 + 000.00	30921866	60271861.259	10	602718612.590	11962348845.620
3+980.00	32587691	63509557.672	10	635095576.720	12597444422.340
3+960.00	34400516	66988207.405	10	669882074.050	13267326496.390
3+940.00	36249717	70650233.683	10	706502336.830	13973828833.220
3 + 920.00	38398543	$7\overline{4648260.898}$	10	$7\overline{46482608.980}$	14720311442.200
3+900.00	40488845	78887388.749	10	788873887.490	15509185329.690
	VO	LUMEN TOTA	L =		15509185329.690

LUGAR	XUTM	YUTM	ZUTM	Dist. al cráter
				(m)
Popocatépetl	539,567.00	2,103,376.00	5,413.16	0
Tlamacas	538,575.00	2,108,239.00	3,923.44	4963.15
Paso de Cortés	537,168.00	2,110,455.00	3,694.64	7474.45
Buena Vista	542,393.00	2,111,438.00	3,256.68	8542.96
San Pedro Benito Juárez	547,016.00	2,095,060.00	2,394.55	11164.38
San juan Ocotepec	547,573.00	2,094,212.00	2,299.99	12168.60
Xalitzintla	550,713.00	2,109,824.00	2,587.97	12876.72
La Magdalena Yancuitlapan	543,655.00	2,090,891.00	2,308.28	13137.24
San Pedro Nexapa	527,724.00	2,110,075.00	2,657.42	13606.37
Ozolco	550,862.00	2,111,889.00	2,586.75	14143.84
Acatzingo	526,104.00	2,096,287.00	2,438.58	15215.33
Loma Verde	524,688.00	2,099,949.00	2,433.08	15268.56
San Baltazar Atlimeyaya	554,566.00	2,099,450.00	2,231.67	15504.31
San Nicolás de Las Ranchos	554,115.00	$2,\!108,\!795.00$	$2,\!443.01$	15524.49
San Juan Tehuixtitlán	524,304.00	$2,\!106,\!753.00$	2,502.53	15632.12
Tochimilco	545,024.00	2,088,713.00	2,083.47	15645.52
San Miguel Tacuanipan	540,105.00	2,087,392.00	2,189.49	15993.05
Atlautla	523,320.00	$2,\!104,\!097.00$	$2,\!419.87$	16262.99
El salto	528,312.00	2,115,687.00	2,696.14	16680.40
San Pedro	527,398.00	2,091,925.00	2,532.92	16709.58
Hueyapan	532,546.00	2,088,211.00	2,340.96	16711.42
San Diego Huehuecalco	524,710.00	2,111,204.00	2,588.77	16793.09
Tetela	528,093.00	$2,\!089,\!768.00$	$2,\!296.47$	17799.73
San Juan Tepecoculco	522,302.00	2,099,011.00	2,232.58	17808.24
San Antonio Zoyatzingo	522,845.00	$2,\!110,\!192.00$	2,530.19	18057.77
Santa María Atexcac	552,853.00	$2,\!115,\!717.00$	$2,\!600.31$	18133.34
San Jerónimo Coyula	550,900.00	2,089,181.00	1,966.41	18164.11
Ozumba de Alzate	521,465.00	$2,\!104,\!989.00$	2,362.18	18173.72
San Tiago Mamalhuazuca	521,526.00	2,100,311.00	2,228.24	18299.51
Amecameca de Juárez	524,541.00	$2,\!114,\!388.00$	2,509.69	18629.14
San Andrés Calpan	555,957.00	$2,\!112,\!653.00$	$2,\!446.63$	18833.34
Huechahuasco	522,906.00	2,093,991.00	2,167.65	19122.43
Tianguismanalco	558,041.00	2,098,205.00	2,163.32	19184.05
Huejotengo	525,948.00	2,089,671.00	$2,\!253.32$	19321.08
San Juan Tlacotompa	522,035.00	2,094,340.00	2,146.42	19723.60
Jumiltepec	523,724.00	$2,091,\overline{348.00}$	$2,25\overline{6.65}$	19891.54
San Andrés Tlamac	520,415.00	$2,\!097,\!284.00$	$2,\!13\overline{4.29}$	20097.55
Nepopualco	553,649.00	2,117,833.00	2,568.84	20181.86
San Francisco Huilango	544,226.00	$2,\!083,\!640.00$	1,998.05	20278.46

Tabla 2. Zonas de riego delimitadas en radio de 25 km $\,$

LUGAR	XUTM	YUTM	ZUTM	Dist. al cráter
				(m)
Texcala	521,473.00	2,093,604.00	2,050.97	20564.16
San Juan Tejupa	548,529.00	2,084,525.00	$1,\!876.15$	20872.89
Tepetlixpa	518,679.00	2,103,869.00	$2,\!324.57$	20893.82
San Buena Ventura Nealtican	560,304.00	2,106,667.00	2,258.66	20996.52
San Juan Amecac	535,966.00	2,082,674.00	2,123.64	21012.85
Domingo Arenas	556,236.00	2,116,245.00	$2,\!433.90$	21058.65
San Antonio Tlaltecahuacan	524,024.00	2,118,003.00	$2,\!496.68$	21343.24
San Antonio Tlatenco	553,094.00	2,120,096.00	$2,\!556.79$	21506.70
San Francisco Zentlapan	522,508.00	2,117,369.00	2,466.38	22063.85
Ayapango	520,788.00	2,115,223.00	$2,\!451.87$	22203.65
San Cristobal Poxtla	521,170.00	2,115,963.00	$2,\!448.79$	22290.85
Santiago Atzitzihuacan	544,085.00	2,081,369.00	1,913.19	22465.98
Ocuituco	523,808.00	2,087,305.00	1,937.78	22508.29
Atlixco	557,936.00	2,089,855.00	1,877.22	22808.72
Tetepetla	519,633.00	2,115,295.00	2,441.98	23225.57
Nepantla de Sor Juana I.C.	516,738.00	2,098,762.00	2,026.02	23290.60
San Mateo Cuaptepec	536,571.00	2,080,249.00	2,051.06	23320.25
San Miguel Aguacomulican	547,271.00	2,081,281.00	$1,\!807.52$	23399.59
San Jerónimo Tecuanipan	563,180.00	2,102,292.00	2,142.76	23637.87
Atzacoaloya	526,892.00	2,123,668.00	2,862.71	23925.32
San Francisco Xochiteopan	539,731.00	2,079,386.00	2,016.58	23990.56
San Nicolás Zecoalacuayan	553,801.00	2,122,861.00	$2,\!465.06$	24130.31
San Rafael	525,911.00	2,124,183.00	$2,\!625.94$	24888.10
San Matías Cuijingo	515,564.00	2,109,995.00	$2,\!490.36$	24898.90
Santa María Acuexcomac	564,647.00	2,105,243.00	$2,\!173.31$	25149.40
Xochitlan	519,199.00	2,087,826.00	1,768.76	25625.34

mencionado, ordenados de menor a mayor distancia de alejamiento del cráter, calculado en base a las coordenadas de proyección UTM zona 14Q, es decir la distancia horizontal respecto al cráter.

Una actividad explosiva del volcán puede expulsar fragmentos de roca y lava en una trayectoria más o menos parabólica que se modifica por una fuerza de arrastre lo que provoca que las caídas de estos fragmentos conocidos como proyectiles balísticos sean más verticales que parabólicos lo que repercute en la fuerza de impacto. (Martin Del Pozzo et al.,2018).

Con base en los registros de impacto recuperados desde noviembre de 1994 a marzo de 2019 por USGS (United States Geological Survey) se han identificado históricamente 123 cráteres de impacto de menos de un metro de diámetro, de los cuales solo 65 han podido ser medidos; el cráter de impacto aumenta respecto al tamaño del balístico en promedio de 4-5 veces el diámetro como se muestra en la figura 7.

Figura 7. Fragmentos líticos encontrados en el depósito precámbrico de la erupción Pliniana de hace 14,000 años reportados por Sosa Ceballos et al. (2012) donde se muestra la relación de la distancia al cráter con diámetro máximo.

Estudio gravimétrico

La aceleración de la gravedad se utiliza cuando el objeto de estudio es el campo de gravedad o las variaciones de densidad, las cuales son responsables de la variación de dicho campo (Arce et al., 2015).

De acuerdo con el Instituto Geográfico Nacional de España (2016) a través de la medición de pequeñas variaciones en el campo gravitatorio (anomalías gravitacionales) es posible detectar procesos geodinámicos en el interior de la corteza terrestre, incluido los movimientos del magma.

Para calcular la anomalía del aire libre se determinó la diferencia entre el valor de gravedad observado y el valor de gravedad teórico corregido por la altura del valor medido de gravedad (g) con respecto a una superficie de referencia mediante la aplicación de una corrección del gradiente de gravedad normal; además se calculó la anomalía de Bouguer, tomando en cuenta la variación de la gravedad con la altura, así como las masas presentes entre el punto de observación y el geoide como superficie de referencia. Al aplicar esta corrección, la anomalía restante es representativa de cambios de densidad a nivel cortical y cambios de grosor en la corteza terrestre. La anomalía de Bouguer es generalmente negativa, (Hirt., et al 2019) como se puede ver en la tabla 3.

Adicionalmente se realizaron perfiles topográficos de las 64 localidades (se presentan solo algunos perfiles) trazando una pendiente promedio como se ve en la figura 8 a la 13, tomando el centro del cráter a la comunidad respectiva.

Cabe aclarar que se presenta una pendiente negativa en los perfiles debido a que hace referencia a la pendiente en descenso, es decir,

					Anomalia	Anomalia
Lugar	Latitud	Longitud	Altura	Gravedad	$\mathbf{d}\mathbf{e}$	de aire
			SNM	local	Bouger	libre
	0	0		m/s^2	m/s^2	m/s^2
Popocatépetl	19.022651	-98.624017	5,413.16	9.772510	-0.002131	0.002635
Tlamacas	19.066619	-98.633347	3,923.44	9.775688	-0.002223	0.001951
Paso de Cortés	19.086672	-98.646678	3,694.64	9.776205	-0.002252	0.001751
Buena Vista	19.095453	-98.596988	3,256.68	9.777049	-0.002292	0.001240
San Pedro	18.947338	-98.553436	2,394.55	9.779191	-0.001813	0.000807
Benito Juárez						
San juan	18.939661	-98.548166	2,299.99	9.779414	-0.001780	0.000743
Ocotepec						
Xalitzintla	19.080677	-98.517937	2,587.97	9.778593	-0.002117	0.000732
La Magdalena	18.909734	-98.585451	2,308.28	9.779375	-0.001777	0.000745
Yancuitlapan						
San Pedro	19.083388	-98.736458	2,657.42	9.778447	-0.002114	0.000798
Nexapa Nexapa						
Ozolco	19.099336	-98.516467	2,586.75	9.778565	-0.002152	0.000689
Ecatzingo	18.958799	-98.752042	2,438.58	9.779108	-0.001818	0.000853
Loma Verde	18.991912	-98.765446	2,433.08	9.778967	-0.001994	0.000677
San Baltazar	18.986825	-98.481604	2,231.67	9.779479	-0.001894	0.000571
Atlimeyaya						
San Nicolás	19.071291	-98.485629	2,443.01	9.778977	-0.002028	0.000673
de Las Ranchos						
San Juan	19.053409	-98.769010	2,502.53	9.778832	-0.002034	0.000722
Tehuixtitlán						
Tochimilco	18.890021	-98.572501	2,083.47	9.779830	-0.001774	0.000518
San Miguel	18.878184	-98.619233	2,189.49	9.779574	-0.001809	0.000595
Tacuanipan						
Atlautla	19.029416	-98.778394	2,419.87	9.779038	-0.001980	0.000687
El salto	19.134098	-98.730786	2,696.14	9.778256	-0.002233	0.000698
San Pedro	18.919360	-98.739812	2,532.92	9.778962	-0.001745	0.001020
Hueyapan	18.885719	-98.690986	2,340.96	9.779350	-0.001731	0.000835
San Diego	19.093630	-98.765094	2,588.77	9.778621	-0.002097	0.000755
Huehuecalco						
Tetela	18.899856	-98.733243	2,296.47	9.779447	-0.001732	0.000787
San Juan	18.983462	-98.788126	2,232.58	9.779513	-0.001847	0.000609
Tepecoculco						
San Antonio	19.084506	-98.782836	2,530.19	9.778784	-0.002052	0.000742
Zoyatzingo						

Tabla 3. Gravedad y anomalías de Bouguer y aire libreen 64 localidades cercanas al volcán Popocatépetl.

					Anomalia	Anomalia
Lugar	Latitud	Longitud	Altura	Gravedad	de	de aire
			SNM	local	Bouger	libre
	0	0		m/s^2	m/s^2	m/s^2
Santa María	19.133879	-98.497435	2,600.31	9.778577	-0.002149	0.000723
Atexcac						
San Jerónimo	18.894114	-98.516698	1,966.41	9.780162	-0.001688	0.000486
Coyula						
Ozumba de	19.037498	-98.796011	2,362.18	9.779174	-0.001968	0.000640
Alzate						
San Tiago	18.995219	-98.795483	2,228.24	9.779474	-0.001904	0.000550
Mamalhuazuca						
Amecameca	19.122407	-98.766660	2,509.69	9.778780	-0.002112	0.000653
de Juárez						
San Andrés	19.106106	-98.468009	2,446.63	9.778973	-0.002049	0.000661
Calpan						
Huechahuasco	18.938087	-98.782446	2,167.65	9.779687	-0.001774	0.000607
Tianguismanalco	18.975478	-98.448628	2,163.32	9.779649	-0.001826	0.000536
Huejotengo	18.899008	-98.753612	2,253.32	9.779534	-0.001730	0.000741
San Juan	18.941250	-98.790715	2,146.42	9.779728	-0.001775	0.000582
Tlacotompa						
Jumiltepec	18.914191	-98.774709	2,256.65	9.779528	-0.001736	0.000737
San Andrés	18.967874	-98.806071	2,134.29	9.779760	6-0.001785	0.000562
Tlamac						
Nepopualco	19.152981	-98.489808	2,568.84	9.778692	-0.002108	0.000732
San Francisco	18.844191	-98.580192	1,998.05	9.779994	-0.001760	0.000443
Huilango						
Texcala	18.934604	-98.796061	2,050.97	9.779931	-0.001761	0.000494
San Juan	18.852093	-98.539326	1,876.15	9.780287	-0.001720	0.000357
Tejupa						
Tepetlixpa	19.027403	-98.822498	2,324.57	9.779285	-0.001929	0.000640
San Buena	19.051886	-98.426869	2,258.66	9.779427	-0.001941	0.000566
Ventura Nealtica						
San Juan	18.835621	-98.658615	2,123.64	9.779843	-0.001660	0.000685
Amecac						
Domingo Arenas	19.138560	-98.465253	2,433.90	9.779054	-0.002012	0.000685
San Antonio	19.155084	-98.771531	2,496.68	9.778766	-0.002166	0.000581
Tlaltecahuacan						
San Antonio	19.173447	-98.495023	2,556.79	9.778697	-0.002140	0.000687
Tlatenco						
San Francisco	19.149371	-98.785956	2,466.38	9.778849	-0.002149	0.000573
Zentlapan						
Ayapango	$19.12\overline{9995}$	-98.802335	$2,45\overline{1.87}$	9.778921	-0.002101	$0.00\overline{0612}$

					Anomalia	Anomalia
Lugar	Latitud	Longitud	Altura	Gravedad	${ m de}$	de aire
			SNM	local	Bouger	libre
	0	0		m/s^2	m/s^2	m/s^2
San Cristobal	19.136679	-98.798695	2,448.79	9.778919	-0.002111	0.000597
Poxtla						
Santiago	18.823670	-98.581581	1,913.19	9.780262	-0.001651	0.000462
Atzitzihuacan						
Ocuituco	18.877650	-98.773961	1,937.78	9.780192	-0.001695	0.000437
Atlixco	18.900020	-98.449873	1,877.22	9.780329	-0.001708	0.000375
Tetepetla	19.130657	-98.813317	2,441.98	9.778950	-0.002093	0.000610
Nepantla de	18.981265	-98.840987	2,026.02	9.780002	-0.001766	0.000462
Sor Juana I.C.						
San Mateo	18.813694	-98.652918	2,051.06	9.780004	-0.001632	0.000634
Cuaptepec						
San Miguel	18.822804	-98.551345	1,807.52	9.780458	-0.001668	0.000333
Aguacomulican						
San Jerónimo	19.012262	-98.399679	2,142.76	9.779746	-0.001833	0.000549
Tecuanipan						
Atzacoaloya	19.206245	-98.744178	2,862.71	9.777975	-0.002232	0.000890
San Francisco	18.805836	-98.622945	2,016.58	9.780083	-0.001617	0.000611
Xochiteopan						
San Nicolás	19.198416	-98.488222	2,465.06	9.778871	-0.002165	0.000564
Zecoalacuayan						
San Rafael	19.210912	-98.753503	2,625.94	9.778447	-0.002228	0.000629
San Matías	19.082794	-98.852050	2,490.36	9.778896	-0.002022	0.000732
Cuijingo						
Santa María	19.038884	-98.385643	2,173.31	9.779683	-0.001852	0.000566
Acuexcomac						
Xochitlan	18.882407	-98.817714	1,768.76	9.780545	-0.001685	0.000267

se tomó como pendiente promedio del punto central del cráter del Popocatépetl al punto en cuestión de la localidad, por ejemplo, para el perfil de la figura 8 se descenderá 19.7274m verticales por cada 100 m horizontales.

Figura 9. Perfil San Andrés Calpan.

Figura 10. Perfil Xalitzintla.

Figura 12. Perfil San Baltazar Atlimeyaya.

Figura 13. Perfil Atlixco.

Análisis de las figuras 8 a la 13: Las distancias calculadas con base en coordenadas de una proyección, una pendiente promedio y un perfil, amplían el panorama en cuanto el riesgo que corren las poblaciones cercanas al volcán, por la relación distancia-pendiente: a menor distancia y mayor pendiente mayor riesgo, a mayor distancia y menor pendiente menor riesgo aunque en los peores escenarios un colapso del edificio volcánico desplazaría material a unos 80 km, con una destrucción total, (Ramos et al., 2018), pero las áreas de mayor afectación serían las que se mencionan en la tabla 3 por la cercanía al cráter y las pendientes pronunciadas. Los perfiles analizados muestran que el riesgo volcánico debido a la topografía del terreno, respecto a la relación pendiente-distancia de las comunidades en orden decreciente es: Xalitzintla, San Baltazar Atlimeyaya, San Nicolás de los Ranchos, San Andrés Calpan y Atlixco. Pero, la región de Atlixco es la comunidad más vulnerable por riesgo volcánico debido a su densidad poblacional, aunque los flujos de material piroclástico y ceniza volcánica llegarían más rápido a las otras comunidades.

Conclusiones

Este trabajo pretende contribuir a los mapas de riesgo generados por las dependencias de Protección Civil de los Estados cercanos al volcán Popocatépetl; determinando las zonas de riesgo, ubicadas en un radio de 25 km; este análisis se realizó con fundamento al convenio que se tiene entre la Benemérita Universidad Autónoma de Puebla y BITS-Geospatial, por lo que fue posible utilizar imágenes satelitales de la plataforma PLANET de la constelación SkySat a 80 cm y poder determinar con exactitud 64 localidades con riesgo latente no sólo en la caída de cenizas sino en un posible flujo piroclástico y lahar que pudiera afectar inmediatamente a las comunidades determinadas.

A través del análisis cartográfico se pudieron definir las características morfológicas del volcán con un modelo ideal de forma elíptica, cuya elevación máxima del cono volcánico se calculó en 5413.16 msnm en la curva máxima cerrada por medio de cartografía digital e imágenes satelitales; de manera similar se obtuvo el volumen del volcán de 15.51 km3, calculado para la fecha en que se realizó la digitalización de la carta INEGI.

Se tomó en cuenta la actividad presente en este primer cuatrimestre del 2019 que ha modificado micrométricamente su estructura por el material piroclástico emanado.

El estudio gravimétrico realizado sirvió para determinar las anomalías gravimétricas que contribuyen a determinar las variaciones de densidad y en los procesos geodinámicos (cambios de densidad a nivel cortical y cambios de grosor en la corteza terrestre) que puedan contribuir a una aceleración de algún elemento volcánico como nube ardiente o flujos de lahar.

En la tabla 3 con la aceleración de la gravedad en puntos importantes, se presentan dos tipos de anomalías, Bouger y aire libre, que probablemente son imperceptibles pero útiles en el análisis de la dinámica subcortical generado por actividad volcánica en los riesgos mencionados.

Finalmente se tiene que mencionar que los trabajos son apoyados por el grupo interdisciplinario de la Facultad de Ingeniería, el Instituto de Ciencias y la Vicerrectoría de Investigación de la Benemérita Universidad Autónoma de Puebla y de la Universidad Pedagógica y Tecnológica de Colombia.

Proyecto financiado por la Vicerrectoría de

Investigación de la Benemérita Universidad Autónoma de Puebla (clave 100409011-VIEP2018-19).

Referencias

 Franco Ramos, O., Vázquez Selem, L., Zamorano Orozco, J. y Villanueva Díaz, J. (2017). "Edad, dinámica geomorfológica y tipología de barrancas en el sector norte del volcán Popocatépetl, México". Boletín de la Sociedad Geológica Mexicana. Vol. (69), UNAM, México, pp. 1-19.

[2] Macías, J.L., 2005, Geología e historia eruptiva de algunos de los grandes volcanes activos de México: Boletín de la Sociedad Geológica Mexicana, 3, 395–399.

[3] Alcántara García, Dante, (2014). "Topografía y sus aplicaciones", Ed. Patria, primera edición, México, pp. 129-184.

[4] Espinasa-Pereña, R. (2012). Historia de la actividad del volcán Popocatépetl. 17 años de erupciones. Recuperado el 21 de junio de 2019 de https://www.cenapred.gob.mx/es/Publicac iones/archivos/225-historiadelaactividaddel volcán popocatpetl-17aosdeerupciones.pdf.

[5] Martin Del Pozzo A. L. y Alatorre Ibargüengoitia M. (2018). "Estudios geológicos y actualización del mapa de peligros del volcán Popocatépetl", Memoria técnica del mapa de peligros del volcán Popocatépetl. Monografías instituto de geofísica, vol. 22, México.

[6] Delgado Granados H., Valdéz González C y Ramos Jiménez E. (2013). Las cenizas volcánicas del Popocatépetl y sus efectos para la aeronavegación infraestructura aeroportuaria. CENAPRED, Instituto de Geofísica, UNAM, México, pp. 20-61. [7] Gravity Information System. Physikalisch-Technische Bundesanstalt, Braunsch weig, 2017, Germany. Disponible en línea:

www.ptb.de/cartoweb3/SISproject.php

[8] Sosa Ceballos G., Gardner J.E., Siebe C. and Macías J.L., (2012). "A caldera forming eruption 14,100 14C yr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing. Journal of Volcano- logy and Geothermal Research", vol. (213), Elsevier, USA, pp. 27-40.

[9] Arce G. J.L., Sosa Ceballos, J. L., Macías, García Tenorio, F., Layer P., Schaaf P. and Solís Pichardo G. (2015). "El Ventorrillo, a paleostructure of Popocatépetl volcano: insights from geochronology and geochemistry", Bulletin of Volcanology, vol. (310), Springer, USA, pp. 77-91.

[10] Instituto Geográfico nacional de España. La vulcanología es multiparamétrica, 14 de octubre de 2016, disponible en línea: http://www.multiteide.es/2016/10/la-volcanologia-multiparametrica/

[11] Hirt, C., Bucha, B., Yang, M. and Kuhn, M. (2019). "A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling". Journal of Geodesy, vol. (44), Springer, Switzerland, pp. 1-18.

[12] Ramos Aguilar, R. et al. (2018). "Photogrammetric follow-up of the Popocatepetl volcano exhalations, in Mexico, during the year 2016". Investigación y Ciencia, vol. (73), UAA, México, pp. 37-48.

[13] Cortés Ramos, J., and Delgado Granados, H. (2012). "The recent retreat of me-

xican glaciers on Citlaltépetl Volcano detected using ASTER data. The Cryosphere Discussions", UGM, vol. (6), México, pp. 3149-3176.

[14] García, F., Ramos, E., and Domínguez, R. (1996). "Posible flujo de lodo en el costado oriente del volcán Popocatépetl. En Volcán Popocatépetl. Estudios realizados durante la crisis de 1994-1995". CENA-PRED, UNAM, México, pp. 109-119.

[15] Siebe, C., Macías, J.L., Abrams, M; Obenholzner, J., 1996, La destrucción de Cacaxtla y Cholula: un suceso en la historia eruptiva del Popocatépetl: Ciencias, 41, 36–45.

[17] INEGI, Topografía. (2015), Recuperado el 08 de febrero de 2019: https://www.inegi.org.mx/temas/topografi a/