Utilización de desechos municipales y lixiviados para generación de electricidad a partir de celdas microbianas
Palabras clave:
bacterias, celda de combustible microbiana, residuos municipales
Resumen
En este trabajo se presentan una revisión sobre las características de las celdas de combustible microbianas conocidas como CCM. Tales como su topología, funcionamiento, materiales y parámetros eléctricos de interés. Se muestra un enfoque sobre el uso de aguas residuales municipales en CCM desarrolladas en los últimos 5 años. Con un enfoque en la comparación de la generación de energía en base a la combinación de los materiales utilizados en los trabajos reportados.
Descargas
La descarga de datos todavía no está disponible.
Citas
Bolognesi, S., Cecconet, D., Callegari, A., & Capodaglio, A. G. (2021). Bioelectrochemical treatment of municipal solid waste landfill mature leachate and dairy wastewater as co-substrates. Environmental Science and Pollution Research, 28(19), 24639–24649. https://doi.org/10.1007/s11356-020-10167-7
Das, D. (2018). Microbial Fuel Cell. A Bioelectrochemical System that Converts Waste to Watts, Springer.
Dordievski, S., Yemendzhiev, H., Koleva, R., Nenov, V., Medić, D., Trifunović, V., & Maksimović, A. (2022). Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater - A laboratory study. Journal of the Serbian Chemical Society, 87(6), 775–784. https://doi.org/10.2298/JSC211008009D
Gao, L., Wei, D., Ismail, S., Wang, Z., El-Baz, A., & Ni, S. Q. (2023). Combination of partial nitrification and microbial fuel cell for simultaneous ammonia reduction, organic removal, and energy recovery. Bioresource Technology, 386(September), 129558. https://doi.org/10.1016/j.biortech.2023.129558
Guadarrama-Pérez, O., Hernández-Romano, J., García-Sánchez, L., Gutierrez-Macias, T., & Estrada-Arriaga, E. B. (2019). Simultaneous bio-electricity and bio-hydrogen production in a continuous flow single microbial electrochemical reactor. Environmental Progress and Sustainable Energy, 38(1), 297–304. https://doi.org/10.1002/ep.12926
Hiegemann, H., Littfinski, T., Krimmler, S., Lübken, M., Klein, D., Schmelz, K. G., Ooms, K., Pant, D., & Wichern, M. (2019). Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology, 294(July). https://doi.org/10.1016/j.biortech.2019.122227
Kamel, M. S., Abd-Alla, M. H., & Abdul-Raouf, U. M. (2020). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell. Environmental Engineering Research, 25(6), 862–870. https://doi.org/10.4491/eer.2019.412
Lakshmidevi, R., Gandhi, N. N., & Muthukumar, K. (2020). Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell. Applied Biochemistry and Biotechnology, 191(2), 852–866. https://doi.org/10.1007/s12010-019-03160-5
Liu, H. & Logan B.E. (2004) Electricity Generation Using an Air Cathode Single Chambers Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology, 38, 4040-4046.
http://dx.doi.org/10.1021/es0499344
Logan, B.E. (2008). Materials. Microbial Fuel Cells, 61–84. https://doi.org/10.1002/9780470258590.ch5
Martinez, S. M., & Di Lorenzo, M. (2019). Electricity generation from untreated fresh digestate with a cost-effective array of floating microbial fuel cells. Chemical Engineering Science, 198, 108–116. https://doi.org/10.1016/j.ces.2018.12.039
Palmore, G. T. R., & Whitesides, G. M. (1994). Microbial and Enzymatic Biofuel Cells. 271–290. https://doi.org/10.1021/bk-1994-0566.ch014
Saeed, T., & Miah, M. J. (2021). Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: Media and flood-dry period ratio. Chemical Engineering Journal, 411(January), 128507. https://doi.org/10.1016/j.cej.2021.128507
Zhao, Feng, Nelli Rahunen, John R. Varcoe, Alexander J. Roberts, Claudio Avignone-Rossa, Alfred E. Thumser, & Robert C. T. Slade. 2009. “Factors Affecting the Performance of Microbial Fuel Cells for Sulfur Pollutants Removal.” Biosensors and Bioelectronics 24(7):1931–36. doi: 10.1016/J.BIOS.2008.09.030.
Das, D. (2018). Microbial Fuel Cell. A Bioelectrochemical System that Converts Waste to Watts, Springer.
Dordievski, S., Yemendzhiev, H., Koleva, R., Nenov, V., Medić, D., Trifunović, V., & Maksimović, A. (2022). Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater - A laboratory study. Journal of the Serbian Chemical Society, 87(6), 775–784. https://doi.org/10.2298/JSC211008009D
Gao, L., Wei, D., Ismail, S., Wang, Z., El-Baz, A., & Ni, S. Q. (2023). Combination of partial nitrification and microbial fuel cell for simultaneous ammonia reduction, organic removal, and energy recovery. Bioresource Technology, 386(September), 129558. https://doi.org/10.1016/j.biortech.2023.129558
Guadarrama-Pérez, O., Hernández-Romano, J., García-Sánchez, L., Gutierrez-Macias, T., & Estrada-Arriaga, E. B. (2019). Simultaneous bio-electricity and bio-hydrogen production in a continuous flow single microbial electrochemical reactor. Environmental Progress and Sustainable Energy, 38(1), 297–304. https://doi.org/10.1002/ep.12926
Hiegemann, H., Littfinski, T., Krimmler, S., Lübken, M., Klein, D., Schmelz, K. G., Ooms, K., Pant, D., & Wichern, M. (2019). Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology, 294(July). https://doi.org/10.1016/j.biortech.2019.122227
Kamel, M. S., Abd-Alla, M. H., & Abdul-Raouf, U. M. (2020). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell. Environmental Engineering Research, 25(6), 862–870. https://doi.org/10.4491/eer.2019.412
Lakshmidevi, R., Gandhi, N. N., & Muthukumar, K. (2020). Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell. Applied Biochemistry and Biotechnology, 191(2), 852–866. https://doi.org/10.1007/s12010-019-03160-5
Liu, H. & Logan B.E. (2004) Electricity Generation Using an Air Cathode Single Chambers Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology, 38, 4040-4046.
http://dx.doi.org/10.1021/es0499344
Logan, B.E. (2008). Materials. Microbial Fuel Cells, 61–84. https://doi.org/10.1002/9780470258590.ch5
Martinez, S. M., & Di Lorenzo, M. (2019). Electricity generation from untreated fresh digestate with a cost-effective array of floating microbial fuel cells. Chemical Engineering Science, 198, 108–116. https://doi.org/10.1016/j.ces.2018.12.039
Palmore, G. T. R., & Whitesides, G. M. (1994). Microbial and Enzymatic Biofuel Cells. 271–290. https://doi.org/10.1021/bk-1994-0566.ch014
Saeed, T., & Miah, M. J. (2021). Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: Media and flood-dry period ratio. Chemical Engineering Journal, 411(January), 128507. https://doi.org/10.1016/j.cej.2021.128507
Zhao, Feng, Nelli Rahunen, John R. Varcoe, Alexander J. Roberts, Claudio Avignone-Rossa, Alfred E. Thumser, & Robert C. T. Slade. 2009. “Factors Affecting the Performance of Microbial Fuel Cells for Sulfur Pollutants Removal.” Biosensors and Bioelectronics 24(7):1931–36. doi: 10.1016/J.BIOS.2008.09.030.

Publicado
2025-04-09
Cómo citar
Suarez Velázquez, G. G., García Reyes, F. M., García Reyes, L. A., & Turriza GonzáálezR. F. (2025). Utilización de desechos municipales y lixiviados para generación de electricidad a partir de celdas microbianas. Contactos, Revista De Educación En Ciencias E Ingeniería, (141), 55 - 65. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/520
Sección
Artículos