Tereftalato de polietileno de desecho (PET), su modificación mediante radiación gamma y sus diversos usos
Palabras clave:
Tereftalato de polietileno de desecho, radiación gamma, disposición de desechos, propiedades físicas y químicas
Resumen
La cantidad de desechos plásticos aumenta año con año y se incrementa su acumulación e impacto en el medio ambiente, razón por la cual se han ido desarrollado diversos procesos de reciclaje. No obstante, la naturaleza y las limitaciones propias de los procedimientos empleados han demostrado la urgencia de buscar y adoptar procesos alternativos. Entre los procesos novedosos, se encuentra el que involucra el uso de la radiación gamma. El cual ha adquirido relevancia en los últimos años, ya que tiene la capacidad de modificar y mejorar las propiedades físicas y químicas. Por esta razón en este artículo se describen diversas investigaciones sobre el uso de la radiación gamma en la modificación y reaprovechamiento del PET de desecho.
Descargas
La descarga de datos todavía no está disponible.
Citas
Alqassim, A.Y. (2021). Environmental health impacts of municipal solid waste landfilling and incineration in different health systems: A review. Hail Journal of Health Sciences, 3 (1), 13-24. https://doi.org/10.4103/1658-8312.347572
Bhanderi, K.K., Joshi, J.R., & Patel, J.V. (2023). Recycling of polyethylene terephthalate (PET or PETE) plastics–An alternative to obtain value added products: A review. Journal of the Indian Chemical Society, 100 (1), 100843. https://doi.org/10.1016/j.jics.2022.100843
Drobny, J. G. (2012). Fundamentals of Radiation Chemistry and Physics (Ed.: J.G. Drobny), William Andrew Publishing, 11-26. https://doi.org/10.1016/B978-1-4557-7881-2.00002-X
Jamdar, V., Kathalewar, M., Jagtap, R.N., Dubey, K.A., & Sabnis, A. (2015). Effect of γ‐irradiation on glycolysis of PET waste and preparation of ecofriendly coatings using bio‐based and recycled materials. Polymer Engineering & Science, 55(11), 2653-2660. https://doi.org/10.1002/pen.24158
Khan, M.I., Sutanto, M.H., Napiah, M.B., Zoorob, S.E., Yusoff, N.I.M., Usman, A., & Memon, A.M. (2022). Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: Design and optimisation using response surface methodology. International Journal of Pavement Engineering, 23(8), 2515-2530. https://doi.org/10.1080/10298436.2020.1861446
Kumar, V., Ali, Y., Sonkawade, R.G., & Dhaliwal, A.S. (2012). Effect of gamma irradiation on the properties of plastic bottle sheet. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 287, 10-14. https://doi.org/10.1016/j.nimb.2012.07.007
Lubna, M.M., Salem, K.S., Sarker, M., & Khan, M.A. (2018). Modification of thermo-mechanical properties of recycled PET by vinyl acetate (VAc) monomer grafting using gamma irradiation. Journal of Polymers and the Environment, 26, 83-90. https://doi.org/10.1007/s10924-016-0922-0
Lee, H., Cheon, H., Kang, Y., Roh, S., & Kim, W. (2021). State-of-the-art modification of plastic aggregates using gamma irradiation and its optimization for application to cementitious composites. Applied Sciences, 11(21), 10340. https://doi.org/10.3390/app112110340
Rao, V. (2009). Radiation processing of polymers. Advances in polymer processing, 402-437. https://doi.org/10.1533/9781845696429.3.402
Schaefer, C.E., Kupwade-Patil, K., Ortega, M., Soriano, C., Büyüköztürk, O., White, A.E., & Short, M.P. (2018). Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste management, 71, 426-439. https://doi.org/10.1016/j.wasman.2017.09.033
Usman, A., Sutanto, M. H., Napiah, M., Zoorob, S.E., Khan, M.I., & Ibrahim, M.B. (2020). Application of gamma irradiation on Polyethylene Terephthalate (PET) for use in asphaltic concrete mixtures as aggregates replacement. In IOP Conference Series: Earth and Environmental Science 498 (1) 012008. https://doi.org/10.1088/1755-1315/498/1/012008
Zahid, M., Abbas, Y.M., Shafiq, N., Khan, M.I., & Ismail, F.I. (2024). Sustainable engineered geopolymer composites utilizing gamma-irradiated PET and graphene nanoplatelets: Optimization and performance enhancement. Sustainability, 16 (17) 7455. https://doi.org/10.3390/su16177455
Bhanderi, K.K., Joshi, J.R., & Patel, J.V. (2023). Recycling of polyethylene terephthalate (PET or PETE) plastics–An alternative to obtain value added products: A review. Journal of the Indian Chemical Society, 100 (1), 100843. https://doi.org/10.1016/j.jics.2022.100843
Drobny, J. G. (2012). Fundamentals of Radiation Chemistry and Physics (Ed.: J.G. Drobny), William Andrew Publishing, 11-26. https://doi.org/10.1016/B978-1-4557-7881-2.00002-X
Jamdar, V., Kathalewar, M., Jagtap, R.N., Dubey, K.A., & Sabnis, A. (2015). Effect of γ‐irradiation on glycolysis of PET waste and preparation of ecofriendly coatings using bio‐based and recycled materials. Polymer Engineering & Science, 55(11), 2653-2660. https://doi.org/10.1002/pen.24158
Khan, M.I., Sutanto, M.H., Napiah, M.B., Zoorob, S.E., Yusoff, N.I.M., Usman, A., & Memon, A.M. (2022). Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: Design and optimisation using response surface methodology. International Journal of Pavement Engineering, 23(8), 2515-2530. https://doi.org/10.1080/10298436.2020.1861446
Kumar, V., Ali, Y., Sonkawade, R.G., & Dhaliwal, A.S. (2012). Effect of gamma irradiation on the properties of plastic bottle sheet. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 287, 10-14. https://doi.org/10.1016/j.nimb.2012.07.007
Lubna, M.M., Salem, K.S., Sarker, M., & Khan, M.A. (2018). Modification of thermo-mechanical properties of recycled PET by vinyl acetate (VAc) monomer grafting using gamma irradiation. Journal of Polymers and the Environment, 26, 83-90. https://doi.org/10.1007/s10924-016-0922-0
Lee, H., Cheon, H., Kang, Y., Roh, S., & Kim, W. (2021). State-of-the-art modification of plastic aggregates using gamma irradiation and its optimization for application to cementitious composites. Applied Sciences, 11(21), 10340. https://doi.org/10.3390/app112110340
Rao, V. (2009). Radiation processing of polymers. Advances in polymer processing, 402-437. https://doi.org/10.1533/9781845696429.3.402
Schaefer, C.E., Kupwade-Patil, K., Ortega, M., Soriano, C., Büyüköztürk, O., White, A.E., & Short, M.P. (2018). Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste management, 71, 426-439. https://doi.org/10.1016/j.wasman.2017.09.033
Usman, A., Sutanto, M. H., Napiah, M., Zoorob, S.E., Khan, M.I., & Ibrahim, M.B. (2020). Application of gamma irradiation on Polyethylene Terephthalate (PET) for use in asphaltic concrete mixtures as aggregates replacement. In IOP Conference Series: Earth and Environmental Science 498 (1) 012008. https://doi.org/10.1088/1755-1315/498/1/012008
Zahid, M., Abbas, Y.M., Shafiq, N., Khan, M.I., & Ismail, F.I. (2024). Sustainable engineered geopolymer composites utilizing gamma-irradiated PET and graphene nanoplatelets: Optimization and performance enhancement. Sustainability, 16 (17) 7455. https://doi.org/10.3390/su16177455
Publicado
2025-11-10
Cómo citar
Camacho Gutiérrez, J. O., & Martínez Barrera, G. (2025). Tereftalato de polietileno de desecho (PET), su modificación mediante radiación gamma y sus diversos usos. Contactos, Revista De Educación En Ciencias E Ingeniería, (144), 105 - 117. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/629
Sección
Artículos
