Santo llamando a Blue Demon
incorporación de nuevas tecnologías para estudiar la morfología de los corales
Palabras clave:
Complejidad estructural, corales, funcionalidad
Resumen
El tamaño y forma de las colonias de coral define en gran medida la función que estas despeñan en el ecosistema arrecifal generando, por ejemplo, más refugio. La construcción y el análisis realizados a partir de modelos tridimensionales de corales ha permitido, entre otras cosas, cuantificar el grado de complejidad estructural de estos organismos y realizar aproximaciones respecto a la función estructural de los mismos. El presente trabajo hace un breve relato del estudio de la forma, de las necesidades de estudiar la forma de los corales en tres dimensiones, y de la incorporación de herramientas que facilitan su estudio.
Descargas
La descarga de datos todavía no está disponible.
Citas
Anelli, M., Julitta, T., Fallati, L., Galli, P., Rossini, M., & Colombo, R. (2019). Towards new applications of underwater photogrammetry for investigating coral reef morphology and habitat complexity in the Myeik Archipelago, Myanmar. Geocarto International, 34(5), 459–472. https:// doi.org/10.1080/10106049.2017.1408703
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. In Functional Ecology (Vol. 33, Issue 6, pp. 948–961). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2435.13265
Combs, I. R., Studivan, M. S., Eckert, R. J., & Voss, J. D. (2021). Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PloS One, 16 (6), e0252593. https://doi.org/10.1371/journal.pone.0252593
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/ s41598-017-16408-z
Fukunaga, A., Burns, J. H. R., Craig, B. K., & Kosaki, R. K. (2019). Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. Journal of Marine Science and Engineering, 7 (2), 27. https:// doi.org/10.3390/jmse7020027
Hernández-Landa, R. C., Barrera-Falcon, E., & Rioja-Nieto, R. (2020). Size-frequency distribution of coral assemblages in insular shallow reefs of the Mexican Caribbean using underwater photogrammetry. PeerJ, 8, e8957. https://doi.org/10.7717/ peerj.8957
Lange, I. D., & Perry, C. T. (2020). A quick, easy and non-invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods in Ecology and Evolution, 11 (6), 714–726. https://doi.org/10.1111/2041-210X.13388
Meiling, S., Muller, E. M., Smith, T. B., & Brandt, M. E. (2020). 3D photogrammetry reveals dynamics of Stony Coral Tissue Loss Disease (SCTLD) lesion progression across a thermal stress event. Frontiers in Marine Science, 7, 597643. https://doi. org/10.3389/fmars.2020.597643
Reichert, J., Backes, A. R., Schubert, P., & Wilke, T. (2017). The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8 (12), 1650–1658. https://doi.org/10.1111/2041-210X.12829
Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20 (3), 299–308. https://doi.org/10.1111/1467- 8659.00522
Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J. P., Dutrieux, E., Garnier, R., Henrich Bruggemann, J., Penin, L., & Adjeroud, M. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151
Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O., & Osborn, J. (2010). A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 8 (MAY), 241–253. https://doi.org/10.4319/ lom.2010.8.241
Zawada, K. J. A., Dornelas, M., & Madin, J. S. (2019). Quantifying coral morphology. Coral Reefs, 38 (6), 1281–1292. https:// doi.org/10.1007/s00338-019-01842-4
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. In Functional Ecology (Vol. 33, Issue 6, pp. 948–961). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2435.13265
Combs, I. R., Studivan, M. S., Eckert, R. J., & Voss, J. D. (2021). Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PloS One, 16 (6), e0252593. https://doi.org/10.1371/journal.pone.0252593
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/ s41598-017-16408-z
Fukunaga, A., Burns, J. H. R., Craig, B. K., & Kosaki, R. K. (2019). Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. Journal of Marine Science and Engineering, 7 (2), 27. https:// doi.org/10.3390/jmse7020027
Hernández-Landa, R. C., Barrera-Falcon, E., & Rioja-Nieto, R. (2020). Size-frequency distribution of coral assemblages in insular shallow reefs of the Mexican Caribbean using underwater photogrammetry. PeerJ, 8, e8957. https://doi.org/10.7717/ peerj.8957
Lange, I. D., & Perry, C. T. (2020). A quick, easy and non-invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods in Ecology and Evolution, 11 (6), 714–726. https://doi.org/10.1111/2041-210X.13388
Meiling, S., Muller, E. M., Smith, T. B., & Brandt, M. E. (2020). 3D photogrammetry reveals dynamics of Stony Coral Tissue Loss Disease (SCTLD) lesion progression across a thermal stress event. Frontiers in Marine Science, 7, 597643. https://doi. org/10.3389/fmars.2020.597643
Reichert, J., Backes, A. R., Schubert, P., & Wilke, T. (2017). The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8 (12), 1650–1658. https://doi.org/10.1111/2041-210X.12829
Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20 (3), 299–308. https://doi.org/10.1111/1467- 8659.00522
Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J. P., Dutrieux, E., Garnier, R., Henrich Bruggemann, J., Penin, L., & Adjeroud, M. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151
Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O., & Osborn, J. (2010). A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 8 (MAY), 241–253. https://doi.org/10.4319/ lom.2010.8.241
Zawada, K. J. A., Dornelas, M., & Madin, J. S. (2019). Quantifying coral morphology. Coral Reefs, 38 (6), 1281–1292. https:// doi.org/10.1007/s00338-019-01842-4
Publicado
2023-12-20
Cómo citar
Guendulain-García, S. D., & López-Pérez, A. (2023). Santo llamando a Blue Demon: incorporación de nuevas tecnologías para estudiar la morfología de los corales. Contactos, Revista De Educación En Ciencias E Ingeniería, (131), 60-66. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/316
Sección
Artículos