Santo llamando a Blue Demon
incorporación de nuevas tecnologías para estudiar la morfología de los corales
Keywords:
structural complexity, corals, functionality
Abstract
Coral size and shape defines their function in the reef ecosystem, determining, for example, the among and type of shelter for associate organisms. The construction and analysis of three-dimensional (3D) coral models has allowed, among other things, to quantify the structural complexity of these organisms and to make approximations of their function. Here we discuss the importance of the determination of shape complexity in corals and provide a brief history of coral shape study as well as the incorporation of new technologies.
Downloads
Download data is not yet available.
References
Anelli, M., Julitta, T., Fallati, L., Galli, P., Rossini, M., & Colombo, R. (2019). Towards new applications of underwater photogrammetry for investigating coral reef morphology and habitat complexity in the Myeik Archipelago, Myanmar. Geocarto International, 34(5), 459–472. https:// doi.org/10.1080/10106049.2017.1408703
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. In Functional Ecology (Vol. 33, Issue 6, pp. 948–961). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2435.13265
Combs, I. R., Studivan, M. S., Eckert, R. J., & Voss, J. D. (2021). Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PloS One, 16 (6), e0252593. https://doi.org/10.1371/journal.pone.0252593
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/ s41598-017-16408-z
Fukunaga, A., Burns, J. H. R., Craig, B. K., & Kosaki, R. K. (2019). Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. Journal of Marine Science and Engineering, 7 (2), 27. https:// doi.org/10.3390/jmse7020027
Hernández-Landa, R. C., Barrera-Falcon, E., & Rioja-Nieto, R. (2020). Size-frequency distribution of coral assemblages in insular shallow reefs of the Mexican Caribbean using underwater photogrammetry. PeerJ, 8, e8957. https://doi.org/10.7717/ peerj.8957
Lange, I. D., & Perry, C. T. (2020). A quick, easy and non-invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods in Ecology and Evolution, 11 (6), 714–726. https://doi.org/10.1111/2041-210X.13388
Meiling, S., Muller, E. M., Smith, T. B., & Brandt, M. E. (2020). 3D photogrammetry reveals dynamics of Stony Coral Tissue Loss Disease (SCTLD) lesion progression across a thermal stress event. Frontiers in Marine Science, 7, 597643. https://doi. org/10.3389/fmars.2020.597643
Reichert, J., Backes, A. R., Schubert, P., & Wilke, T. (2017). The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8 (12), 1650–1658. https://doi.org/10.1111/2041-210X.12829
Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20 (3), 299–308. https://doi.org/10.1111/1467- 8659.00522
Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J. P., Dutrieux, E., Garnier, R., Henrich Bruggemann, J., Penin, L., & Adjeroud, M. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151
Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O., & Osborn, J. (2010). A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 8 (MAY), 241–253. https://doi.org/10.4319/ lom.2010.8.241
Zawada, K. J. A., Dornelas, M., & Madin, J. S. (2019). Quantifying coral morphology. Coral Reefs, 38 (6), 1281–1292. https:// doi.org/10.1007/s00338-019-01842-4
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. In Functional Ecology (Vol. 33, Issue 6, pp. 948–961). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2435.13265
Combs, I. R., Studivan, M. S., Eckert, R. J., & Voss, J. D. (2021). Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PloS One, 16 (6), e0252593. https://doi.org/10.1371/journal.pone.0252593
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/ s41598-017-16408-z
Fukunaga, A., Burns, J. H. R., Craig, B. K., & Kosaki, R. K. (2019). Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. Journal of Marine Science and Engineering, 7 (2), 27. https:// doi.org/10.3390/jmse7020027
Hernández-Landa, R. C., Barrera-Falcon, E., & Rioja-Nieto, R. (2020). Size-frequency distribution of coral assemblages in insular shallow reefs of the Mexican Caribbean using underwater photogrammetry. PeerJ, 8, e8957. https://doi.org/10.7717/ peerj.8957
Lange, I. D., & Perry, C. T. (2020). A quick, easy and non-invasive method to quantify coral growth rates using photogrammetry and 3D model comparisons. Methods in Ecology and Evolution, 11 (6), 714–726. https://doi.org/10.1111/2041-210X.13388
Meiling, S., Muller, E. M., Smith, T. B., & Brandt, M. E. (2020). 3D photogrammetry reveals dynamics of Stony Coral Tissue Loss Disease (SCTLD) lesion progression across a thermal stress event. Frontiers in Marine Science, 7, 597643. https://doi. org/10.3389/fmars.2020.597643
Reichert, J., Backes, A. R., Schubert, P., & Wilke, T. (2017). The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8 (12), 1650–1658. https://doi.org/10.1111/2041-210X.12829
Rocchini, C., Cignoni, P., Montani, C., Pingi, P., & Scopigno, R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20 (3), 299–308. https://doi.org/10.1111/1467- 8659.00522
Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J. P., Dutrieux, E., Garnier, R., Henrich Bruggemann, J., Penin, L., & Adjeroud, M. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151
Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O., & Osborn, J. (2010). A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 8 (MAY), 241–253. https://doi.org/10.4319/ lom.2010.8.241
Zawada, K. J. A., Dornelas, M., & Madin, J. S. (2019). Quantifying coral morphology. Coral Reefs, 38 (6), 1281–1292. https:// doi.org/10.1007/s00338-019-01842-4
Published
2023-12-20
How to Cite
Guendulain-García, S. D., & López-Pérez, A. (2023). Santo llamando a Blue Demon: incorporación de nuevas tecnologías para estudiar la morfología de los corales. Contactos, Revista De Educación En Ciencias E Ingeniería, (131), 60-66. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/316
Section
Artículos