Balance de Energía y Entrelazamiento Cuántico en un sistema de dos cúbits
Palabras clave:
termodinámica, entrelazamiento, balance de energía, entropía
Resumen
Se investiga cual es la ley de conservación que subyace con la perdida ó ganancia de entrelazamiento por un sistema de cúbits. Se encuentra que la pérdida (ganancia) de entrelazamiento cuántico implica que el sistema ceda (absorba) energía de los alrededores a temperatura constante.
Descargas
La descarga de datos todavía no está disponible.
Citas
Bell J. S. (1966), On the problem of Hidden Variables in Quantum Mechanics, Rev. Mod. Phys. 38, 1 DOI: No existe
Bennet C. H., Brassard G., Crepeau C. ,et al. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895. DOI: https://doi. org/10.1103/PhysRevLett.70.1895
Bennet C. H., Wiesner S. J. (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881. DOI: https://doi. org/10.1103/PhysRevLett.69.2881
Cirac J. I. and P. Zoller (1994) Preparation of macroscopic superpositions in manyatom systems, Phys. Rev. A 50, 2799. DOI: https://doi.org/10.1103/PhysRevA.50.R2799
Ekert A. K. (1991), Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661. DOI: https://doi.org/10.1103/ PhysRevLett.67.661
Han S., Rouse R., and Lukens J. E. (1996) Generation of a Population Inversion between Quantum States of a Macroscopic Variable, Phys. Rev. Lett. 76, 3404. DOI: https://doi.org/10.1103/PhysRevLett. 76.3404
Klein, U.; Lefèvre, W. (2007) Materials in eighteenth-century science. Cambridge: MIT-Press.
Maziero J., C’eleri L. C., Serra R. M., and Vedral V. (2009) Classical and Quantum Correlations under Decoherence, Phys. Rev. A 80, 044102. DOI: https://doi. org/10.1103/PhysRevA.80.044102.
Raimond J. M., M. Brune, and S. Haroche (2001) Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565. DOI: https://doi. org/10.1103/RevModPhys.73.565
Spiller T. P., Clark T. D., Prance R. J. et al. (1992) Quantum Computing and QuanQuantum Bits in Mesoscopic Systems, Prog. Low Temp. Phys. 13, 219, Springer.
Van Ness H. C. (1983) Understanding Thermodynamics, Dover Publications.
Yang C. P., Chu S. –I, and Han S. (2003) Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference- device qubits in cavity QED, Phys. Rev. A 67, 042311 DOI: https://doi. org/10.1103/PhysRevA.67.042311
Zhang F. –Y., Chen Z. –H., Li C., and Song H. –S. (2012) Simply quantum information processing with RF superconducting qubits, JETP Letters 96 785 DOI: https:// doi.org/10.1134/S0021364012240149
Zhang, Z., Yuan, C., Shen, S. et al. (2021) High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf 7, 123.DOI: https://doi.org/10.1038/ s41534-021-00462-7
Zheng S. B. and G. C. Guo (2000) Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED
Phys. Rev. Lett 85, 2392. DOI: https://doi. org/10.1103/PhysRevLett.85.2392
Bennet C. H., Brassard G., Crepeau C. ,et al. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895. DOI: https://doi. org/10.1103/PhysRevLett.70.1895
Bennet C. H., Wiesner S. J. (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881. DOI: https://doi. org/10.1103/PhysRevLett.69.2881
Cirac J. I. and P. Zoller (1994) Preparation of macroscopic superpositions in manyatom systems, Phys. Rev. A 50, 2799. DOI: https://doi.org/10.1103/PhysRevA.50.R2799
Ekert A. K. (1991), Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661. DOI: https://doi.org/10.1103/ PhysRevLett.67.661
Han S., Rouse R., and Lukens J. E. (1996) Generation of a Population Inversion between Quantum States of a Macroscopic Variable, Phys. Rev. Lett. 76, 3404. DOI: https://doi.org/10.1103/PhysRevLett. 76.3404
Klein, U.; Lefèvre, W. (2007) Materials in eighteenth-century science. Cambridge: MIT-Press.
Maziero J., C’eleri L. C., Serra R. M., and Vedral V. (2009) Classical and Quantum Correlations under Decoherence, Phys. Rev. A 80, 044102. DOI: https://doi. org/10.1103/PhysRevA.80.044102.
Raimond J. M., M. Brune, and S. Haroche (2001) Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565. DOI: https://doi. org/10.1103/RevModPhys.73.565
Spiller T. P., Clark T. D., Prance R. J. et al. (1992) Quantum Computing and QuanQuantum Bits in Mesoscopic Systems, Prog. Low Temp. Phys. 13, 219, Springer.
Van Ness H. C. (1983) Understanding Thermodynamics, Dover Publications.
Yang C. P., Chu S. –I, and Han S. (2003) Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference- device qubits in cavity QED, Phys. Rev. A 67, 042311 DOI: https://doi. org/10.1103/PhysRevA.67.042311
Zhang F. –Y., Chen Z. –H., Li C., and Song H. –S. (2012) Simply quantum information processing with RF superconducting qubits, JETP Letters 96 785 DOI: https:// doi.org/10.1134/S0021364012240149
Zhang, Z., Yuan, C., Shen, S. et al. (2021) High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf 7, 123.DOI: https://doi.org/10.1038/ s41534-021-00462-7
Zheng S. B. and G. C. Guo (2000) Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED
Phys. Rev. Lett 85, 2392. DOI: https://doi. org/10.1103/PhysRevLett.85.2392
Publicado
2024-10-03
Cómo citar
Castro San Agustín, J. R., & Ávila Aoki, M. (2024). Balance de Energía y Entrelazamiento Cuántico en un sistema de dos cúbits. Contactos, Revista De Educación En Ciencias E Ingeniería, (134), 14 - 18. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/409
Sección
Artículos