Balance de Energía y Entrelazamiento Cuántico en un sistema de dos cúbits

  • José Román Castro San Agustín Centro Universitario UAEM Valle de Chalco, UAEMex
  • Manuel Ávila Aoki Centro Universitario UAEM Valle de Chalco, UAEMex
Keywords: thermodynamics, entanglement, energy balance, entropy

Abstract

It is investigated what is the conservation law that underlies with the loss (gain) of quantum entanglement of a system of qubits. It is found that loss (gain) on quantum entanglement implies that the system gives (absorb) energy of the environment at constant temperature.

Downloads

Download data is not yet available.

References

Bell J. S. (1966), On the problem of Hidden Variables in Quantum Mechanics, Rev. Mod. Phys. 38, 1 DOI: No existe

Bennet C. H., Brassard G., Crepeau C. ,et al. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895. DOI: https://doi. org/10.1103/PhysRevLett.70.1895

Bennet C. H., Wiesner S. J. (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881. DOI: https://doi. org/10.1103/PhysRevLett.69.2881

Cirac J. I. and P. Zoller (1994) Preparation of macroscopic superpositions in manyatom systems, Phys. Rev. A 50, 2799. DOI: https://doi.org/10.1103/PhysRevA.50.R2799

Ekert A. K. (1991), Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661. DOI: https://doi.org/10.1103/ PhysRevLett.67.661

Han S., Rouse R., and Lukens J. E. (1996) Generation of a Population Inversion between Quantum States of a Macroscopic Variable, Phys. Rev. Lett. 76, 3404. DOI: https://doi.org/10.1103/PhysRevLett. 76.3404

Klein, U.; Lefèvre, W. (2007) Materials in eighteenth-century science. Cambridge: MIT-Press.

Maziero J., C’eleri L. C., Serra R. M., and Vedral V. (2009) Classical and Quantum Correlations under Decoherence, Phys. Rev. A 80, 044102. DOI: https://doi. org/10.1103/PhysRevA.80.044102.

Raimond J. M., M. Brune, and S. Haroche (2001) Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565. DOI: https://doi. org/10.1103/RevModPhys.73.565

Spiller T. P., Clark T. D., Prance R. J. et al. (1992) Quantum Computing and QuanQuantum Bits in Mesoscopic Systems, Prog. Low Temp. Phys. 13, 219, Springer.

Van Ness H. C. (1983) Understanding Thermodynamics, Dover Publications.

Yang C. P., Chu S. –I, and Han S. (2003) Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference- device qubits in cavity QED, Phys. Rev. A 67, 042311 DOI: https://doi. org/10.1103/PhysRevA.67.042311

Zhang F. –Y., Chen Z. –H., Li C., and Song H. –S. (2012) Simply quantum information processing with RF superconducting qubits, JETP Letters 96 785 DOI: https:// doi.org/10.1134/S0021364012240149

Zhang, Z., Yuan, C., Shen, S. et al. (2021) High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf 7, 123.DOI: https://doi.org/10.1038/ s41534-021-00462-7

Zheng S. B. and G. C. Guo (2000) Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED

Phys. Rev. Lett 85, 2392. DOI: https://doi. org/10.1103/PhysRevLett.85.2392
Published
2024-10-03
How to Cite
Castro San Agustín, J. R., & Ávila Aoki, M. (2024). Balance de Energía y Entrelazamiento Cuántico en un sistema de dos cúbits. Contactos, Revista De Educación En Ciencias E Ingeniería, (134), 14 - 18. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/409
Section
Artículos

Most read articles by the same author(s)