Materiales sólidos utilizados en la captura de gases de efecto invernadero: CO2 y jerarquización

  • Ana Yañez -Aulestia Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México.
Palabras clave: adsorbentes, adsorción, CO2, MOFs

Resumen

El estudio de las interacciones entre sólidos y gases es parte importante en la fisicoquímica de superficies, correlacionándose fuertemente con el diseño de materiales sólidos para la captura de gases como el CO2. Comprender esas interacciones, incluyendo su afinidad, su impacto en la capacidad de adsorción, estabilidad y regenerabilidad en diferentes condiciones ambientales, es esencial para el desarrollo de materiales efectivos en la captura de gases y compuestos de efecto invernadero. En este contexto, en este trabajo se examina el impacto de los gases, centrándose en el CO2, y cómo el diseño de materiales sólidos jerarquizados permite modificar y generar cambios estructurales que influyen significativamente en la adsorción de gases.

Descargas

Citas

Aaron, D., y Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep Sci Technol, 40(1–3), 321–348, 2005. https://doi. org/10.1081/SS-200042244

Benavides Ballesteros, H., y León Aristizabal, G. Información técnica sobre Gases de Efecto Invernadero y el cambio climático. En Ideam (pp. 1–102), 2007. https:// doi.org/IDEAM–METEO/008-2007

Cai, G., Yan, P., Zhang, L., Zhou, H., y Jiang, H. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev, 121(20), 12278–12326, 2021. https://doi. org/10.1021/acs.chemrev.1c00243

Calvin, K., et al. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 2023. https://doi.org/10.59327/IPCC/AR6- 9789291691647

Choi, S., Drese, J. H., y Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854, 2009. https://doi.org/10.1002/cssc.200900036

Danckwerts, P. The reaction of CO2 with ethanolamines. Chem Eng Sci, 34(4), 443–446, 1979. https://doi.org/http://dx. doi.org/10.1016/0009-2509(79)85087-3

Dziejarski, B., Serafin, J., Andersson, K., y Krzyżyńska, R. CO2 capture materials: a review of current trends and future challenges. Mater Today Sustainability (Vol. 24), Elsevier, 2023. https://doi.org/ 10.1016/j.mtsust.2023.100483

Feng, L., Wang, K., Willman, J., y Zhou, H.-C. Hierarchy in Metal–Organic Frameworks. ACS Cent Sci, 6(3), 359–367, 2020. https://doi.org/10.1021/acscentsci. 0c00158

INECC. (2024, abril). Instituto Nacional de Ecología y Cambio Climático. Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero INEGYCEI 2020-2021. https://datos. gob.mx/busca/dataset/inventario-nacional- de-emisiones-de-gases-y-compuestos- de-efecto-invernadero-inegycei

IUPAC. (1997). The Golden Book, Compendium of Chemical Terminology. En Blackwell Scientific Publications (2a ed.). https://goldbook.iupac.org/index.html

Jones, et al. National Contributions to Climate Change Due to Historical Emissions of Carbon Dioxide, Methane and Nitrous Oxide, 2024. https://doi.org/https:// doi.org/10.5281/zenodo.10839859.

Kabtamu, D., Yi-nan, W., y Li, F. Hierarchically porous metal–organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. J Hazard Mater, 397, 2020. https:// doi.org/10.1016/j.jhazmat.2020.122765

Lakes, R. Materials with structural hierarchy Roderic Lakes. En Nature, 361, 6412, 1993, pp. 511–515https://doi.org/ 10.1038/361511a0

Sircar, S. Basic Research Needs for Design of Adsorptive Gas Separation Processes. Ind Eng Chem Res, 45(16), 5435–5448, 2006. https://doi.org/10.1021/ie051056a

Sridhar, S., Smitha, B., y Aminabhavi, T. Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes-A Review. Sep Purif Rev, 36(2), 113–174, 2007. https://doi. org/10.1080/15422110601165967

Su, B., Sanchez, C., y Yang, X. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. John Wiley & Sons, 2012.

Wang, Q., Luo, J., Zhong, Z., y Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 4(1), 42–55, 2011. https://doi.org/10.1039/ C0EE00064G

Xiong, Q., Chen, Y., Yang, D., Wang, K., Wang, Y., Yang, J., Li, L., y Li, J. (2022). Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis. En Materials Chemistry Frontiers, 6, 20. Royal Society of Chemistry, 2022. pp. 2944–2967. https://doi. org/10.1039/d2qm00557c

Yang, R. Gas separation by adsorption processes. Imperial College Press. Imperial College Press, 1997.

Yin, X., Alsuwaidi, A., y Zhang, X. Hierarchical metal-organic framework (MOF) pore engineering. En Microporous and Mesoporous Mater, 330. Elsevier, 2022. https://doi.org/10.1016/j.micromeso. 2021.111633
Publicado
2024-10-17
Cómo citar
Yañez -Aulestia, A. (2024). Materiales sólidos utilizados en la captura de gases de efecto invernadero: CO2 y jerarquización. Contactos, Revista De Educación En Ciencias E Ingeniería, (136), 77 - 85. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/429