Materiales sólidos utilizados en la captura de gases de efecto invernadero: CO2 y jerarquización

  • Ana Yañez -Aulestia Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México.
Keywords: adsorbents, adsorption, CO2, MOFs

Abstract

The study of interactions between solids and gases is fundamental in the physical chemistry of surfaces, particularly in the design of solid materials for gas capture, such as CO2. Understanding how gaseous molecules interact with the material surface, including their affinity and impact on adsorption capacity, stability, and reusability under different environmental conditions, is essential for developing effective materials for gas and greenhouse gas compound capture. In this context, the impact of greenhouse gases and compounds, focusing on CO2, is examined, and how the design of hierarchical solid materials allows for generating structural changes that significantly influence gas adsorption.

Downloads

Download data is not yet available.

References

Aaron, D., y Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep Sci Technol, 40(1–3), 321–348, 2005. https://doi. org/10.1081/SS-200042244

Benavides Ballesteros, H., y León Aristizabal, G. Información técnica sobre Gases de Efecto Invernadero y el cambio climático. En Ideam (pp. 1–102), 2007. https:// doi.org/IDEAM–METEO/008-2007

Cai, G., Yan, P., Zhang, L., Zhou, H., y Jiang, H. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev, 121(20), 12278–12326, 2021. https://doi. org/10.1021/acs.chemrev.1c00243

Calvin, K., et al. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 2023. https://doi.org/10.59327/IPCC/AR6- 9789291691647

Choi, S., Drese, J. H., y Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854, 2009. https://doi.org/10.1002/cssc.200900036

Danckwerts, P. The reaction of CO2 with ethanolamines. Chem Eng Sci, 34(4), 443–446, 1979. https://doi.org/http://dx. doi.org/10.1016/0009-2509(79)85087-3

Dziejarski, B., Serafin, J., Andersson, K., y Krzyżyńska, R. CO2 capture materials: a review of current trends and future challenges. Mater Today Sustainability (Vol. 24), Elsevier, 2023. https://doi.org/ 10.1016/j.mtsust.2023.100483

Feng, L., Wang, K., Willman, J., y Zhou, H.-C. Hierarchy in Metal–Organic Frameworks. ACS Cent Sci, 6(3), 359–367, 2020. https://doi.org/10.1021/acscentsci. 0c00158

INECC. (2024, abril). Instituto Nacional de Ecología y Cambio Climático. Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero INEGYCEI 2020-2021. https://datos. gob.mx/busca/dataset/inventario-nacional- de-emisiones-de-gases-y-compuestos- de-efecto-invernadero-inegycei

IUPAC. (1997). The Golden Book, Compendium of Chemical Terminology. En Blackwell Scientific Publications (2a ed.). https://goldbook.iupac.org/index.html

Jones, et al. National Contributions to Climate Change Due to Historical Emissions of Carbon Dioxide, Methane and Nitrous Oxide, 2024. https://doi.org/https:// doi.org/10.5281/zenodo.10839859.

Kabtamu, D., Yi-nan, W., y Li, F. Hierarchically porous metal–organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. J Hazard Mater, 397, 2020. https:// doi.org/10.1016/j.jhazmat.2020.122765

Lakes, R. Materials with structural hierarchy Roderic Lakes. En Nature, 361, 6412, 1993, pp. 511–515https://doi.org/ 10.1038/361511a0

Sircar, S. Basic Research Needs for Design of Adsorptive Gas Separation Processes. Ind Eng Chem Res, 45(16), 5435–5448, 2006. https://doi.org/10.1021/ie051056a

Sridhar, S., Smitha, B., y Aminabhavi, T. Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes-A Review. Sep Purif Rev, 36(2), 113–174, 2007. https://doi. org/10.1080/15422110601165967

Su, B., Sanchez, C., y Yang, X. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. John Wiley & Sons, 2012.

Wang, Q., Luo, J., Zhong, Z., y Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 4(1), 42–55, 2011. https://doi.org/10.1039/ C0EE00064G

Xiong, Q., Chen, Y., Yang, D., Wang, K., Wang, Y., Yang, J., Li, L., y Li, J. (2022). Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis. En Materials Chemistry Frontiers, 6, 20. Royal Society of Chemistry, 2022. pp. 2944–2967. https://doi. org/10.1039/d2qm00557c

Yang, R. Gas separation by adsorption processes. Imperial College Press. Imperial College Press, 1997.

Yin, X., Alsuwaidi, A., y Zhang, X. Hierarchical metal-organic framework (MOF) pore engineering. En Microporous and Mesoporous Mater, 330. Elsevier, 2022. https://doi.org/10.1016/j.micromeso. 2021.111633
Published
2024-10-17
How to Cite
Yañez -Aulestia, A. (2024). Materiales sólidos utilizados en la captura de gases de efecto invernadero: CO2 y jerarquización. Contactos, Revista De Educación En Ciencias E Ingeniería, (136), 77 - 85. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/429