El potencial de la Espectroscopía Raman en la caracterización de fibras electrohiladas compuestas

  • Omar Eduardo Uribe Juárez Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Juan Morales Corona Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Flor Ivon Vivar Velázquez Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Roberto Olayo González Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • José Rafael Godínez Fernández Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, Iztapalapa
Palabras clave: Electrohilado, Espectroscopia, Raman, Caracterización, Ácido poliláctico (PLA). Hidroxiapatita (HA)

Resumen

En este trabajo se muestra la espectroscopía Raman como técnica para la caracterización de fibras electrohiladas hechas de ácido poliláctico (PLA) y ácido poliláctico/ hidroxiapatita (HA), relacionando los modos vibracionales de la PLA y la HA con los principales picos registrados en sus espectros Raman, utilizando sus picos característicos para determinar la distribución del PLA y la HA en las fibras de PLA/HA, por último, se presenta una herramienta (WebMo) para la simulación de espectros Raman de moléculas pequeñas, como el ácido láctico y el fosfato.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adya, A. K., & Canetta, E. (2020). Nanotechnology and its applications to animal biotechnology. In Animal Biotechnology: Models in Discovery and Translation. https:// doi.org/10.1016/B978-0-12-811710- 1.00014-8

Ahmadi Bonakdar, M., & Rodrigue, D. (2024). Electrospinning: Processes, Structures, and Materials. In Macromol (Vol. 4, Issue 1). https://doi.org/10.3390/macromol4010004

Bolskis, E., Adomavičiūtė, E., & Griškonis, E. (2022). Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins. Polymers, 14(3). https://doi. org/10.3390/polym14030379

Bumbrah, G. S., & Sharma, R. M. (2016). Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. In Egyptian Journal of Forensic Sciences (Vol. 6, Issue 3). https://doi.org/10.1016/j. ejfs.2015.06.001

Cassanas, G., Morssli, M., Fabrègue, E., & Bardet, L. (1991). Vibrational spectra of lactic acid and lactates. Journal of Raman Spectroscopy, 22(7). https://doi. org/10.1002/jrs.1250220709
Chiang, N., Jiang, N., Madison, L. R., Pozzi, E. A., Wasielewski, M. R., Ratner, M. A., Hersam, M. C., Seideman, T., Schatz, G. C., & Van Duyne, R. P. (2017).

Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 139(51). https://doi.org/10.1021/jacs.7b10645

Gupta, A., Prasad, A., Mulchandani, N., Shah, M., Ravi Sankar, M., Kumar, S., & Katiyar, V. (2017). Multifunctional Nanohydroxyapatite- Promoted Toughened High-Molecular-Weight Stereocomplex Poly(lactic acid)-Based Bionanocomposite for Both 3D-Printed Orthopedic Implants and High-Temperature Engineering Applications. ACS Omega, 2(7). https://doi. org/10.1021/acsomega.7b00915

Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., & Valev, V. K. (2019). Raman Techniques: Fundamentals and Frontiers. In Nanoscale Research Letters (Vol. 14, Issue 1). https://doi.org/10.1186/s11671-019-3039-2

Mao, Y., Shen, W., Wu, S., Ge, X., Ao, F., Ning, Y., Luo, Y., & Liu, Z. (2023). Electrospun polymers: Using devices to enhance their potential for biomedical applications. In Reactive and Functional Polymers (Vol. 186). https://doi.org/10.1016/j.reactfunctpolym. 2023.105568

Polik, W. F., & Schmidt, J. R. (2022). Web- MO: Web-based computational chemistry calculations in education and research. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(1). https:// doi.org/10.1002/wcms.1554

Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. In Materials (Vol. 15, Issue 12). https://doi. org/10.3390/ma15124312

Rashid, T. U., Gorga, R. E., & Krause, W. E. (2021). Mechanical Properties of Electrospun Fibers—A Critical Review. In Advanced Engineering Materials (Vol. 23, Issue 9). https://doi.org/10.1002/ adem.202100153

Reddy, V. S., Tian, Y., Zhang, C., Ye, Z., Roy, K., Chinnappan, A., Ramakrishna, S., Liu, W., & Ghosh, R. (2021). A review on electrospun nanofibers based advanced applications: From health care to energy devices. In Polymers (Vol. 13, Issue 21). https:// doi.org/10.3390/polym13213746

Timchenko, P. E., Timchenko, E. V., Pisareva, E. V., Vlasov, M. Yu., Volova, L. T., Frolov, O. O., & Kalimullina, A. R. (2018). Experimental studies of hydroxyapatite by Raman spectroscopy. Journal of Optical Technology, 85(3). https://doi.org/10.1364/ jot.85.000130

Yashima, M., Yonehara, Y., & Fujimori, H. (2011). Experimental visualization of chemical bonding and structural disorder in hydroxyapatite through charge and nuclear-density analysis. Journal of Physical Chemistry C, 115(50). https://doi. org/10.1021/jp208746y
Publicado
2024-12-19
Cómo citar
Uribe Juárez, O. E., Morales Corona, J., Vivar Velázquez, F. I., Olayo González, R., & Godínez Fernández, J. R. (2024). El potencial de la Espectroscopía Raman en la caracterización de fibras electrohiladas compuestas. Contactos, Revista De Educación En Ciencias E Ingeniería, (139), 128 - 137. Recuperado a partir de https://contactos.izt.uam.mx/index.php/contactos/article/view/475

Artículos más leídos del mismo autor/a