El potencial de la Espectroscopía Raman en la caracterización de fibras electrohiladas compuestas

  • Omar Eduardo Uribe Juárez Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Juan Morales Corona Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Flor Ivon Vivar Velázquez Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • Roberto Olayo González Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa
  • José Rafael Godínez Fernández Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, Iztapalapa
Keywords: Electrospinning, Spectroscopy, Raman, Characterization, Polylactic acid (PLA). Hydroxyapatite (HA)

Abstract

In this work, Raman spectroscopy is shown as a technique for the characterization of electrospun fibers made of polylactic acid (PLA) and polylactic acid/hydroxyapatite (HA), relating the PLA and HA vibrational modes with the main peaks recorded in their Raman spectra, using their characteristic peaks to determine the distribution of PLA and HA in PLA/HA fibers, finally, a tool (WebMo) for the simulation of Raman spectra of small molecules, such as lactic acid and phosphate, is presented.

Downloads

Download data is not yet available.

References

Adya, A. K., & Canetta, E. (2020). Nanotechnology and its applications to animal biotechnology. In Animal Biotechnology: Models in Discovery and Translation. https:// doi.org/10.1016/B978-0-12-811710- 1.00014-8

Ahmadi Bonakdar, M., & Rodrigue, D. (2024). Electrospinning: Processes, Structures, and Materials. In Macromol (Vol. 4, Issue 1). https://doi.org/10.3390/macromol4010004

Bolskis, E., Adomavičiūtė, E., & Griškonis, E. (2022). Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins. Polymers, 14(3). https://doi. org/10.3390/polym14030379

Bumbrah, G. S., & Sharma, R. M. (2016). Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. In Egyptian Journal of Forensic Sciences (Vol. 6, Issue 3). https://doi.org/10.1016/j. ejfs.2015.06.001

Cassanas, G., Morssli, M., Fabrègue, E., & Bardet, L. (1991). Vibrational spectra of lactic acid and lactates. Journal of Raman Spectroscopy, 22(7). https://doi. org/10.1002/jrs.1250220709
Chiang, N., Jiang, N., Madison, L. R., Pozzi, E. A., Wasielewski, M. R., Ratner, M. A., Hersam, M. C., Seideman, T., Schatz, G. C., & Van Duyne, R. P. (2017).

Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 139(51). https://doi.org/10.1021/jacs.7b10645

Gupta, A., Prasad, A., Mulchandani, N., Shah, M., Ravi Sankar, M., Kumar, S., & Katiyar, V. (2017). Multifunctional Nanohydroxyapatite- Promoted Toughened High-Molecular-Weight Stereocomplex Poly(lactic acid)-Based Bionanocomposite for Both 3D-Printed Orthopedic Implants and High-Temperature Engineering Applications. ACS Omega, 2(7). https://doi. org/10.1021/acsomega.7b00915

Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., & Valev, V. K. (2019). Raman Techniques: Fundamentals and Frontiers. In Nanoscale Research Letters (Vol. 14, Issue 1). https://doi.org/10.1186/s11671-019-3039-2

Mao, Y., Shen, W., Wu, S., Ge, X., Ao, F., Ning, Y., Luo, Y., & Liu, Z. (2023). Electrospun polymers: Using devices to enhance their potential for biomedical applications. In Reactive and Functional Polymers (Vol. 186). https://doi.org/10.1016/j.reactfunctpolym. 2023.105568

Polik, W. F., & Schmidt, J. R. (2022). Web- MO: Web-based computational chemistry calculations in education and research. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(1). https:// doi.org/10.1002/wcms.1554

Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. In Materials (Vol. 15, Issue 12). https://doi. org/10.3390/ma15124312

Rashid, T. U., Gorga, R. E., & Krause, W. E. (2021). Mechanical Properties of Electrospun Fibers—A Critical Review. In Advanced Engineering Materials (Vol. 23, Issue 9). https://doi.org/10.1002/ adem.202100153

Reddy, V. S., Tian, Y., Zhang, C., Ye, Z., Roy, K., Chinnappan, A., Ramakrishna, S., Liu, W., & Ghosh, R. (2021). A review on electrospun nanofibers based advanced applications: From health care to energy devices. In Polymers (Vol. 13, Issue 21). https:// doi.org/10.3390/polym13213746

Timchenko, P. E., Timchenko, E. V., Pisareva, E. V., Vlasov, M. Yu., Volova, L. T., Frolov, O. O., & Kalimullina, A. R. (2018). Experimental studies of hydroxyapatite by Raman spectroscopy. Journal of Optical Technology, 85(3). https://doi.org/10.1364/ jot.85.000130

Yashima, M., Yonehara, Y., & Fujimori, H. (2011). Experimental visualization of chemical bonding and structural disorder in hydroxyapatite through charge and nuclear-density analysis. Journal of Physical Chemistry C, 115(50). https://doi. org/10.1021/jp208746y
Published
2024-12-19
How to Cite
Uribe Juárez, O. E., Morales Corona, J., Vivar Velázquez, F. I., Olayo González, R., & Godínez Fernández, J. R. (2024). El potencial de la Espectroscopía Raman en la caracterización de fibras electrohiladas compuestas. Contactos, Revista De Educación En Ciencias E Ingeniería, (139), 128 - 137. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/475

Most read articles by the same author(s)