Ponte las pilas: desecha seguro
Abstract
The demand for various energy storage devices has increased significantly in recent decades, and this trend is expected to continue indefinitely. The problem associated with this tendency is that batteries can contain different elements that harm both human health and the environment. Therefore, different standards and programs have been designed to ensure the proper disposal of these devices at their lifespan end. Thus, the present work analyzes the different components of batteries and their impact under diverse final disposal scenarios. It is extremely important to know the effects that technological development has on the environment and our health. From this, we get involved by participating in the execution of different measures to minimize them.
Downloads
References
DW. The batteries of the future: Sodium instead of lithium. https://www.dw.com/en/the-batteriesof-the-future-sodium-instead-of-lithium/a54707542 (Recuperado el 15 de agosto de 2021)
El Financiero. Pilas piratas, con 40 % del mercado en México. 2013. https://www.elfinanciero.com.mx/empresas /pilas-pirata-con-40-del-mercado-enmexico/ (Recuperado el 26 de agosto de 2021)
Grover, S., y Sibi, G., Metal Leachate from Alkaline Battery Litters: A threat to Aquatic Organisms. Int J Microbiol Curr Res, 1, [ 1] pp. 26-28, 2019.
He, X.-X., Liu, X.-H., Yang, Z., Zhang, H., Li, L., Xu,G., Qiao, Y., Chou, S.-L., Wu, M., Research progress of flexible sodium-ion batteries derived from renewable polymer materials. Electrochemistry Communications, 128, pp. 107067, 2021.
Liu, L. Life Cycle Assessment of a LithiumIon Battery Pack for Energy Storage Systems. The environmental impact of a grid-connected battery energy storage system. UPPSALA UNIVERSITET. ISSN: 1650-8300, 2020.
NOM-052-SEMARNAT-2005, http://www.dof.gob.mx/normasOficiales/ 1055/SEMARNA/SEMARNA.htm (Recuperado el 3 de septiembre de 2021)
NOM-212-SCFI-2017, http://dof.gob.mx/nota_detalle.php? codigo=5539835&fecha=03 %2F10 %2F2018 (Recuperado el 3 de septiembre de 2021)
Olivetti, E., Gregory, J., y Kirchain, R., Life cycle impacts of alkaline batteries with a focus on end-of-life. Massachusetts Institute of Technology: Cambridge, MA, USA., pp. 2-5, 2011. Patel, B., Sodium-Ion Batteries Poised to Pick Off Large-Scale Lithium-Ion Applications. https://spectrum.ieee.org/sodium-ionbattery (Recuperado el 15 de Agosto de 2021)
SEDEMA. Ponte Pilas con tu Ciudad. https://www.sedema.cdmx.gob.mx/ programas/programa/ponte-pilas-con-tuciudad (Recuperado el 3 de septiembre de 2021)
SEMARNAT,2020. Diagnostico básico para la gestión integral de los residuos. https://www.gob.mx/cms/uploads/ attachment/file/554385/DBGIR-15- mayo2020.pdf (Recuperado el 1 de septiembre de 2021)
Wang, Q., Liu, W., Yuan, X., Tang, H., Tang, Y., Wang, M., Zuo, J., Song, Z., Sun, J., Environmental impact analysis and process optimization of batteries based on life cycle assessment. Journal of cleaner production. 174, 1262-1273, 2018.
Yang, Z., Uhrynowski, W., Jakusz, G., Retka, J., Karczewska-Golec, J., DebiecAndrzejewska, K., ... y Drewniak, L., Biochemical treatment of leachates from hydrometallurgical recycling of spent alkaline batteries. Hydrometallurgy, 191, pp. 105223, 2020.