La condición de deslizamiento de Navier
Una idea antigua que resurge
Keywords:
Slip conditions, boundary conditions, rough surfaces, flow in porous media
Abstract
Fluid flow is based on mass transport and momentum equations, which are widely accepted within the scientific community. However, the success in applying these equations is compromised if proper boundary conditions are not used. This paper discusses the Navier slip condition, which has been ignored for more than a century by the scientific community and a no-slip condition has been used instead. Only recently has the slip condition regained relevance due to the type of current applications, where the use of the no-slip condition is no longer justified, for example, in porous media applications.
Downloads
Download data is not yet available.
References
Bottaro, A. (2019). Flow over natural or engineered surfaces: an adjoint homogenization perspective. Journal of Fluid Mechanics 877, 1–91. Publisher: Cambridge University Press (CUP).
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon : exposition et application des principes `a suivre et des formules `a employer dans les questions de distribution d’eau. V. Dalmont (Paris).
Darrigol, O. (2005). Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.
Klinkenberg, L.J. (1941). The permeability of porous media to liquids and gases. American Petroleum Institute 2, 200–213. Publisher: Oil Gas Scientific Research Project Institute.
Knudsen, M. (1950). Kinetic Theory of Gases. Third edition. Methuen’s monographs on physical subjects.
Kramers, H.A., Kistemaker, J. (1943). On the slip of a diffusing gas mixture along a wall. Physica 10, 699–713. Publisher: Elsevier BV.
Lacis U., Sudhakar, Y., Pasche, S., Bagheri, S. (2020). Transfer of mass and momentum at rough and porous surfaces. Journal of Fluid Mechanics 884. Publisher: Cambridge University Press (CUP).
Maxwell, J.C. (1879). On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London, 170, 231-256.
Navier, M. (1822). Mémoire sur les lois du mouvement des fluides. volumen 6. l’Académie Royale des Sciences.
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon : exposition et application des principes `a suivre et des formules `a employer dans les questions de distribution d’eau. V. Dalmont (Paris).
Darrigol, O. (2005). Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.
Klinkenberg, L.J. (1941). The permeability of porous media to liquids and gases. American Petroleum Institute 2, 200–213. Publisher: Oil Gas Scientific Research Project Institute.
Knudsen, M. (1950). Kinetic Theory of Gases. Third edition. Methuen’s monographs on physical subjects.
Kramers, H.A., Kistemaker, J. (1943). On the slip of a diffusing gas mixture along a wall. Physica 10, 699–713. Publisher: Elsevier BV.
Lacis U., Sudhakar, Y., Pasche, S., Bagheri, S. (2020). Transfer of mass and momentum at rough and porous surfaces. Journal of Fluid Mechanics 884. Publisher: Cambridge University Press (CUP).
Maxwell, J.C. (1879). On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London, 170, 231-256.
Navier, M. (1822). Mémoire sur les lois du mouvement des fluides. volumen 6. l’Académie Royale des Sciences.
Published
2023-09-25
How to Cite
Valdés Parada, F. J. (2023). La condición de deslizamiento de Navier: Una idea antigua que resurge. Contactos, Revista De Educación En Ciencias E Ingeniería, (130), 18-34. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/292
Section
Artículos