Muyal-Nez, una plataforma de construcción de sistemas de ciencias de datos médicos para procesos de toma de decisiones en el sector salud
Abstract
In recent years, data science systems and big data itself have turned into complex technologic assets that have started showing their possibilities to work with massive amounts of medical information, to support decision making processes such as prevention, detection, diagnosis, and prognosis, for instance, during cancer treatments. These groundbreaking technologies have triggered a revolution in scientific environments, but also in public health management. For example, a public health organization such as the Instituto Nacional de Rehabilitación (INR), in Mexico, has a collection of 45 million of medical images amounting to 43 Terabytes (TB) that require storage, transportation, and process, to help physicians during decision making processes. Nevertheless, the construction of data science system represents a huge challenge for this type of institutions as they do not only have to manage large volumes of data, or interconnect and develop complex artificial intelligence applications (such as machine learning or data mining applications), but also, they are compelled to accomplish a very strict set of regulations concerning security issues during the management of personal data. In this paper, we present the experiences and learnings obtained from the design, implementation of Muyal-Nez, which is a set of tools oriented to the design and deployment of data science infrastructure, that fits with the particular requirements of any public health organization on the aforementioned conditions.
Downloads
References
Heinze, G., Canchola, V. H. O., Miranda, G. B., Fuentes, N. A. B., & Sánchez, D. P. G. Los médicos especialistas en México, Gaceta médica de México, 154[3], pp.342-351, 2018. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7197316. Consultado el 11 de julio de 2022.
Kruse, C. S., y Beane, A., Health Information Technology Continues to Show Positive Effect, Journal of medical Internet research, 20[2], pp.1-9, 2018. Disponible en: https://www.jmir.org/2018/2/e41/. Consultado el 11 de julio de 2022.
Lee, R. (Ed.). Big Data, Cloud Computing, and Data Science Engineering Vol. 844, Springer, Berlin/Heidelberg, Germany, 2019, pp.51-68. Disponible en: https://doi.org/10.1007/978-3-030-24405-7. Consultado el 11 de julio de 2022.
Ortega-Arjona, J. L., Patterns for Parallel Software Design, Wiley Publishing, Chichester, United Kingdom, 2010, pp.1-411.
Randal, A., The ideal versus the real: Revisiting the history of virtual machines and containers, ACM Computing Surveys (CSUR), 53[1], pp.1-31, 2020. Disponible en: https://doi.org/10.1145/3365199. Consultado el 11 de julio de 2022.
Ren, S., He, K., Girshick, R., y Sun, J., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, pp.1137-1149, 2015. Disponible en: https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf. Consultado el 11 de julio de 2022.
Rose, K., Eldridge, S., y Chapin, L., The internet of things: An overview, The internet society (ISOC), 80, pp.1-50, 2015.
Sanchez-Pinto, L. N., Luo, Y., y Churpek, M. M., Big Data and Data Science in Critical Care, Chest, 154[5], pp.1239-1248, 2018. Disponible en: https://doi.org/10.1016/j.chest.2018.04.037. Consultado el 11 de julio de 2022.
Yan, L., DICOM Standard and Its Application in PACS System, Medical Imaging Process & Technology, 1[1], pp.1-8, 2018. Disponible en: http://dx.doi.org/10.24294/mipt.v1i1.221. Consultado el 11 de julio de 2022.