Selaginella y sus adaptaciones a ambientes estresantes

  • Lic. Andrés Romero Freg Departamento de Biología Comparada, UNAM
  • Dra. Susana Valencia A. Departamento de Biología Comparada, UNAM
Keywords: water stress, Selaginella morphology, tolerance, desiccation

Abstract

The origin of terrestrial plants goes back to the Ordovician and since then these organisms have developed the ability to colonize the terrestrial environment through the emergence of adaptations to conquer even the most extreme environments. This article presents information collected about Selaginella, in particular, data on its origin, general morphological characteristics, its life cycle and richness in Mexico; with special emphasis on the morpho-anatomical and physiological adaptations that allow them to face challenging climates with water deficit, intense light and high temperatures, thanks to the acquisition of morphological and physiological adaptations that place them as an important gene bank for the development of better crops that can overcome climate change and above all the scarcity of water that humanity faces today.

Downloads

Download data is not yet available.

References

Adame-González, A. B., Muñíz-DL, M. E., & Valencia-A. S., Comparative leaf morphology and anatomy of six Selaginella species (Selaginellaceae, subgen. Rupestrae) with notes on xerophytic adaptations. Flora, 260, 151482. https://doi. org/10.1016/j.flora.2019.151482 . 2019.*

Alejo-Jacuinde, G., González-Morales, S. I., Oropeza-Aburto, A., Simpson, J., & Herrera- Estrella, L., Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species. BMC Plant Biology, 20(1). https://doi. org/10.1186/s12870-020-02638-3 . 2020.

Brulé, V., Rafsanjani, A., Asgari, M., Western, T. L. & Pasini, D., Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla. Journal of The Royal Society Interface, 16(159), 20190454. https:// doi.org/10.1098/rsif.2019.0454 , 2019.

Eunchae Kwon, Prakash Basnet, Neha Samir Roy, Jong-Hwa Kim, Kweon Heo, Kyong-Cheul Park, Taeyoung Um, Nam Soo Kim & Ik-Young Choi, Identification of resurrection genes from the transcriptome of dehydrated and rehydrated Selaginella tamariscina, 16:12, DOI: https://doi.org/10 .1080/15592324.2021.1973703 , 2021.*

Gechev, T.S., van Breusegem, F., Stone, J.M., Denev, I. y Laloi, C., Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28, 1091-1101., https:// doi.org/10.1002/bies.20493 , 2006.

Green, W. A.,The function of the Aerenchyma in arborescent lycopsids: Evidence of an unfamiliar metabolic strategy. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2257–2267. https:// doi.org/10.1098/rspb.2010.0224 , 2010.

Iba, K., Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53:225- 245., https://doi.org/10.1146/annurev.arplant. 53.100201.160729, 2002.

J. O. Mascorro Gallardo, N. Avonce, G. Iturriaga., BIOTECNOLOGÍA DE LA TREHALOSA EN LAS PLANTAS Revista Chapingo. Serie horticultura, julio-diciembre, año/vol. 11, número 002 Universidad Autónoma Chapingo Chapingo, México pp. 193-202, 2005.

Klaus, K. V., Schulz, C., Bauer, D. S., & Stützel, T., Historical biogeography of the ancient lycophyte genus Selaginella: early adaptation to xeric habitats on Pangea. Cladistics, 33(5), 469–480. https://doi. org/10.1111/cla.12184 , 2016.*

Madhavi A. Ariyarathne, Bernard W.M. Wone, Overexpression of the Selaginella lepidophylla bHLH transcription factor enhances water-use efficiency, growth, and development in Arabidopsis, Plant Science, Volume 315, 111129, ISSN 0168-9452, https://doi.org/10.1016/j. plantsci.2021.111129, 2022.

Martí, M.C., Camejo, D., Fernandez- García, N., Rellán-Aí lvarez, R., Marques, S., Sevilla, F. y Jiménez, A, Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. Journal of Hazardous Materials 172, 879-885, https://doi.org/10.1016/j.jhazmat. 2009.06.083, 2009.

Mickel, J.T., A.R. Smith, & I.A. Valdespino Q., Selaginella. In: J.T. Mickel and Smith (eds.). The pteridophytes of Mexico. Memoirs of the New York Botanical Garden. 88: 550-602, 2004.

Nagesh, R., and V.R. Devaraj., High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust. J. Crop Sci. 2:40-48, 2008.

Pampurova, S., Verschooten, K., Avonce, N. & Van Dijck, P., Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. Journal of Plant Research, 127(6), 803-813. https://doi.org/10.1007/ s10265-014-0663-x , 2014.*

Schneider, E. L., & Carlquist, S., SEM Studies on the Vessels of Heterophyllous Species of Selaginella. The Journal of the Torrey Botanical Society, 127(4), 263–270. https://doi.org/10.2307/3088644 , 2000.

Schwacke, R., S. Grallath, K.E. Breitkreuz, E. Stransky, H. Stransky, W.B Frommer, and D. Rentscha., LeProT1, a transporter for proline, glycine betaine, and g-amino butyric acid in tomato pollen. Plant Cell 11:377-391., 1999.

Toldi O, Tuba Z, Scott P. Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Sci 2009;176:187–99, 2009.

Villaseñor, J. L., Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad, 87(3), 29–30. https://doi.org/10.1016/j.rmb.2016.06.017 , 2016.

Wahid, A., S. Gelani, M. Ahsraf, and M.R. Fooland., Heat tolerance in plants: an overview. Environ. Exp.Bot. 61:199- 223. 2007. * Lecturas recomendadas.
Published
2024-07-25
How to Cite
Romero Freg, L. A., & Valencia A., D. S. (2024). Selaginella y sus adaptaciones a ambientes estresantes. Contactos, Revista De Educación En Ciencias E Ingeniería, (133), 28 - 41. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/391
Section
Artículos