Máquinas Térmicas Brownianas
Keywords:
Heat engines, Carnot cycle, efficiency at maximum power, Brownian heat engines
Abstract
In this dissemination work, a brief historical sketch is presented of how the theoretical concepts and laws of classical thermodynamics were formulated to explain the operation of heat engines or devices which transform energy into useful work. How these concepts have also been extended to explain the operation of such devices within a more realistic theoretical context. Nowadays, such concepts are also very important for the development and construction of microscopic- sized machines. Scientists continue this work within the framework of a discipline called stochastic thermodynamics.
Downloads
Download data is not yet available.
References
Angulo Brown, F., y Ramos Madrigal, G., Sobre ciclos politrópicos a tiempo finito, Rev. Mex. Fis. 36 [3], pp.363-375, 1990.
Ashkin, A., Dziedzic, J. M., Yamane, T., Optical trapping and manipulation of single cells using infrared laser beams, Nature (London) 330, pp.769-771, 1987.
Berry, R. S., Kazakov, V. A., Sieniutycz, S., Szwast, Z., Tsvilin, A. M., Thermodynamic Optimization of Finite-Time Processes, Wiley, Chichester, 2000.
Blickle, V., y Bechinger, C., Realization of a micrometre-sized stochastic heat engine, Nat. Phys. 8, pp.143-146, 2012.
Carnot, N. L. S,, Réflexions sur la puissance motrice du feu, Paris Collection des travaux, 1824, y la traducción al inglés de E. Mendoza, Dover Publications In. N. Y. 1960.
Curzon, F. y Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys. 43, pp. 22-24, 1975.
Contreras-Vergara O., Sánchez-Salas, N., Valencia-Ortega, G., Jiménez-Aquino, J. I., Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power, Phys. Rev. E, 108, 014123, pp.1-10, 2023.
Chambadal, P. Les Centrales Nucleaires, Armand Colin, Paris, 1957, pp. 41-58.
Einstein. A., Investigations on the Theory of the Brownian Movement, Dover Publications, US, New York, 1956, pp. 1-18.
Esposito, M., Kawai, R., Lindenberg, K., Van de Broeck, C., Efficiency at Maximum Power of Low-Dissipation Carnot Engines, Phys. Rev. Lett. 105, 150603, pp.1-4, 2010.
García-Colín Scherer, L., De la máquina de vapor al cero absoluto (calor y entropía), La ciencia desde México Fondo de Cultura Económica, 1986, pp.7-147.
García-Colín Scherer, L., Introducción a la termodinámica clásica, 3a. edición, Editorial Trillas, 1986, pp.13-335.
Gonzalez-Ayala J., Arias-Hernandez L. A., Angulo-Brown F., Connection between maxium-work and maximum-power thermal cycles, Phys. Rev. E 88, 052142 pp.1-7, 2013.
Hoffmann, K. H., Burzler, J., Schubert, S., Endoreversible Thermodynamics, J. Non-Equilib. Thermodyn. 22, pp. 311- 355, 1997.
Hänggi, P. y Marchesoni, F., Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81 [1], pp. 387-442, 2009.
Langevin, P., Sur la théorie du mouvement Brownien, C. R. Acad. Sci. 146, pp. 530–533, 1908.
Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Rica, R. A., Adiabatic Processes Realized with a Trapped Brownian Particle, Phys. Rev. Lett. 114, 120601, pp.1-6, 2015.
Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Parrondo, J. M., Rica, R. A., Brownian Carnot engine, Nat. Phys. 12, pp.67-72, 2016.
Novikov, I. I., Efficiency of an atomic power generating installation, Sov. At. Energy, 3 [11], pp.1269-1272, 1957.
Plata, C. A. Guéry-Odelin, D., Trizac, E., Prados, A. Building an irreversible Carnot- like heat engine with an overdamped harmonic oscillator, J. Stat. Mech. Theory Exp. 093207, pp.2-18, 2020.
Sanchez, S., Soler L., Katuri, J., Chemically Powered Micro- and Nanomotors, Angew. Chem. Int. Ed. 52, pp. 2-33, (2014).
Sekimoto, K., Stochastic Energetics, Vol.799 Springer, Heidelberg, Germany, 2010, pp.3-322.
Schmiedl, T., y Seifert, U., Efficiency at maximum power: An analytically solvable model for stochastic heat engines, Europhys. Lett. 81, 20003, pp.1-6, 2008.
Valero, J., Pal, N., Dhakai, S., Walter, N. G., Famulok, M., A bio-hybrid DNA rotor- stator nanoengine that moves along predefined tracks, Nat. Nanotechnol. 13, pp. 496 -503, 2018.
Zamudio Murillo, A. E., Ciclo de Stirling para una partícula browniana, pp.1-121, (2019). Tesis de Maestría en Ciencias (Física), Universidad Autónoma Metropolitana, Unidad Iztapalapa. Disponible en la biblioteca digital de la UAM-Iztapalapa.
Ashkin, A., Dziedzic, J. M., Yamane, T., Optical trapping and manipulation of single cells using infrared laser beams, Nature (London) 330, pp.769-771, 1987.
Berry, R. S., Kazakov, V. A., Sieniutycz, S., Szwast, Z., Tsvilin, A. M., Thermodynamic Optimization of Finite-Time Processes, Wiley, Chichester, 2000.
Blickle, V., y Bechinger, C., Realization of a micrometre-sized stochastic heat engine, Nat. Phys. 8, pp.143-146, 2012.
Carnot, N. L. S,, Réflexions sur la puissance motrice du feu, Paris Collection des travaux, 1824, y la traducción al inglés de E. Mendoza, Dover Publications In. N. Y. 1960.
Curzon, F. y Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys. 43, pp. 22-24, 1975.
Contreras-Vergara O., Sánchez-Salas, N., Valencia-Ortega, G., Jiménez-Aquino, J. I., Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power, Phys. Rev. E, 108, 014123, pp.1-10, 2023.
Chambadal, P. Les Centrales Nucleaires, Armand Colin, Paris, 1957, pp. 41-58.
Einstein. A., Investigations on the Theory of the Brownian Movement, Dover Publications, US, New York, 1956, pp. 1-18.
Esposito, M., Kawai, R., Lindenberg, K., Van de Broeck, C., Efficiency at Maximum Power of Low-Dissipation Carnot Engines, Phys. Rev. Lett. 105, 150603, pp.1-4, 2010.
García-Colín Scherer, L., De la máquina de vapor al cero absoluto (calor y entropía), La ciencia desde México Fondo de Cultura Económica, 1986, pp.7-147.
García-Colín Scherer, L., Introducción a la termodinámica clásica, 3a. edición, Editorial Trillas, 1986, pp.13-335.
Gonzalez-Ayala J., Arias-Hernandez L. A., Angulo-Brown F., Connection between maxium-work and maximum-power thermal cycles, Phys. Rev. E 88, 052142 pp.1-7, 2013.
Hoffmann, K. H., Burzler, J., Schubert, S., Endoreversible Thermodynamics, J. Non-Equilib. Thermodyn. 22, pp. 311- 355, 1997.
Hänggi, P. y Marchesoni, F., Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81 [1], pp. 387-442, 2009.
Langevin, P., Sur la théorie du mouvement Brownien, C. R. Acad. Sci. 146, pp. 530–533, 1908.
Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Rica, R. A., Adiabatic Processes Realized with a Trapped Brownian Particle, Phys. Rev. Lett. 114, 120601, pp.1-6, 2015.
Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Parrondo, J. M., Rica, R. A., Brownian Carnot engine, Nat. Phys. 12, pp.67-72, 2016.
Novikov, I. I., Efficiency of an atomic power generating installation, Sov. At. Energy, 3 [11], pp.1269-1272, 1957.
Plata, C. A. Guéry-Odelin, D., Trizac, E., Prados, A. Building an irreversible Carnot- like heat engine with an overdamped harmonic oscillator, J. Stat. Mech. Theory Exp. 093207, pp.2-18, 2020.
Sanchez, S., Soler L., Katuri, J., Chemically Powered Micro- and Nanomotors, Angew. Chem. Int. Ed. 52, pp. 2-33, (2014).
Sekimoto, K., Stochastic Energetics, Vol.799 Springer, Heidelberg, Germany, 2010, pp.3-322.
Schmiedl, T., y Seifert, U., Efficiency at maximum power: An analytically solvable model for stochastic heat engines, Europhys. Lett. 81, 20003, pp.1-6, 2008.
Valero, J., Pal, N., Dhakai, S., Walter, N. G., Famulok, M., A bio-hybrid DNA rotor- stator nanoengine that moves along predefined tracks, Nat. Nanotechnol. 13, pp. 496 -503, 2018.
Zamudio Murillo, A. E., Ciclo de Stirling para una partícula browniana, pp.1-121, (2019). Tesis de Maestría en Ciencias (Física), Universidad Autónoma Metropolitana, Unidad Iztapalapa. Disponible en la biblioteca digital de la UAM-Iztapalapa.
Published
2024-12-19
How to Cite
Jiménez Aquino, J. I. (2024). Máquinas Térmicas Brownianas. Contactos, Revista De Educación En Ciencias E Ingeniería, (139), 20 - 31. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/465
Section
Artículos