El polaritón, cuando la luz se vuelve líquida

  • Miguel Angel Bastarrachea Magnani Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa
Keywords: polariton, exciton, semiconductor, Bose-Einstein condensate, quantum technologies

Abstract

This work explains the concept of polariton, a quantum quasiparticle that results from the strong coupling between light and matter and that, thanks to its hybrid character, has become a tool not only for the understanding of fundamental phenomena in quantum, condensed matter, and atomic physics but also for the design of new quantum technologies. In particular, the case of exciton-polaritons in semiconductor microcavities is reviewed, which by virtue of the strong interactions that can be generated between them and that result in novel nonlinear optical effects, their out-of-equilibrium character, their ability to form quantum macroscopic states as condensates and superfluids, and its potential to integrate new light-matter quasiparticles have earned the name of quantum fluids of light.

Downloads

Download data is not yet available.

References

Basov, D. N., Asenjo-Garcia, A., James Schuck, P., Zhu, X., and Rubio, A. Polariton panorama, Nanophotonics; 10[2], pp. 549–577, 2021. https://doi.org/10.1515/nanoph-2020-0449

Bastarrachea-Magnani, M. A., Camacho- Guardian, A. y Bruun, G. M., Attractive and Repulsive Exciton-Polariton Interactions Mediated by an Electron Gas, Phys. Rev. Lett. 126, pp. 127405, 2021. https://doi.org/10.1103/PhysRevLett. 126.127405

Bloch, J, Carusotto, I., Wouters, M., Non-equilibrium Bose–Einstein condensation in photonic systems, Nat. Rev. Phys. 4, pp. 470-488, 2022. https://www.nature. com/articles/s42254-022-00464-0

Carusotto, I y Ciuti, C., Quantum fluids of light, Rev. Mod. Phys. 85, pp. 299-366, 2013. https://doi.org/10.1103/RevModPhys. 85.299

Geim, A. K. y Grigorieva, I. V., Van der Waals heterostructures, Nature 499, pp. 419–425, 2013. https://www.nature.com/ articles/nature12385

Hopfield, J. J., Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev. 112, pp. 1555-1567, 1958. https://doi.org/10.1103/ PhysRev.112.1555

Gómez García, E. y Barberis Blostein, P. Iniciativa Mexicana en Tecnologías Cuánticas. Unidad de Publicaciones y Difusión del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad de México, 2023. https:// www.dicu.com.mx/imtc

Kavokin, A., Liew, T. C. H., Schneider, C., Lagoudakis, P. G., Klembt, S., Hoefling, S., Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, pp. 435-451, 2022. https://www.nature.com/ articles/nature12385

Luo, J., Close the gap in the US CHIPS and Science law, Nature 610, 34 (2022). https:// doi.org/10.1038/d41586-022-03122-8

Riedel, M., Kovacs, M., Zoller, P., Mlynek, J. y Calarco, T., Europe's Quantum Flagship initiative, Quantum Sci. Tech. 4 020501, 2019. https://iopscience.iop.org/ article/10.1088/2058-9565/ab042d

Lecturas recomendadas:

Combescot, M. y Shiau, S.-Y., Excitons and Cooper Pairs. Two Composite Bosons in Many-Body Physics, Oxford University Press, Oxford, 2016.

Haroche, S. y Raimond, J-M., Exploring the Quantum: Atoms, Cavities and Photons, Oxford University Press, 2006.

Kavokin, A. V., Baumberg, J. J., Malpuech, G., y Laussy, F. P., Microcavities, Series on Semiconductor Science and Technology, Oxford University Press, Oxford, 2017.

Pethick, C. J. y Smith, H. Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2008.

Sakurai, J. J., y Napolitano, J., Modern Quantum Mechanics, Addison-Wesley, San Francisco, 2011.
Published
2024-12-19
How to Cite
Bastarrachea Magnani, M. A. (2024). El polaritón, cuando la luz se vuelve líquida. Contactos, Revista De Educación En Ciencias E Ingeniería, (139), 116 - 127. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/474