Energy storage system and the use of electrolyte biopolymers

  • Judith Cardoso Universidad Autónoma Metropolitana, Unidad Iztapalapa
  • Dora Nava Universidad Autónoma Metropolitana, Unidad Iztapalapa
  • Gregorio Guzmán Universidad Autónoma Metropolitana, Unidad Iztapalapa
Keywords: electrolyte biopolymers, Energy storage, Bisquert, D. Caben, S. Rühle, G. Hodes, and A. Zaban,

Abstract

Energy storage systems have had a boom in electronic technologies powered by renewable energy systems. Petrochemical fuels in common use such as coal, gas, biofuels and hydrogen have become the dominant form of primary energy storage. On the other hand, the electrochemical systems (supercapacitors, fuel cells and batteries), considered as secondary storage systems, already are rechargeable systems since they generate electricity through electrochemical reactions, which are reversible. The batteries have been widely used mainly for application in mobile devices such as laptops, camcorders and mobile phones, without forgetting your application in the emerging industry of electric cars. The use of innovative materials in Li-ion, such as biopolymers, batteries allows you to obtain economic, environmentally friendly materials with high electrochemical stability and the environment.

Downloads

Download data is not yet available.

References

Bisquert, D. Caben, S. Rühle, G. Hodes, and A. Zaban, "Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye- sensitized solar cells.," J. Phys. Chem. B 108, 8106 (2004).

Comparative Review of Long - Term Energy Storage Technologies for Renewable Energy SystemsA.Andrijanovits, H. Hoimoja, D. Vinnikov. Electronics and Electrical Engineering 118, 21 (2012).

J. l. San Martín, l. Zamora, J. J. San Martín, V. Aperribay, P. Eguía. "Energy Storage Technologies for Electric Applications" Consultado el 5 de julio de 2014. Energy%20Storage%20Technologies%20for%20Electric%20Applications. Web archive

Pilas de combustible. National Geographic. Consultado 24 de junio de 2014 http://www.nationalgeographic.es/medioambiente/calentamiento-global/fuel-cell-profile.

D. Linden, T. B. Reddy, 2002, "Handbook of Batteries", 3aEd, McGraw-Hill, USA.

N. Casado, G. Hernández, D. Mecerreyes, M. Armand. "Polímeros innovadores para almacenamiento de energía". Innovative Polymers for Energy Storage (IPES). Consultado 25 de junio 2O14 www.cicnetwork.es/upload/pdf/secciones/entornocic2.pdf

M. Armand, J.M. Chabagno and M. Duclot, "Polyethers as solid electrolytes" in?P. Vashitshta, J.N. Mundy, G.K. Shenoy, Fast ion Transport in Solids. Electrodes and Electrolytes, North Holland Publishers, Amsterdam (1979).

F. Croce, G.B. Appetecchi, L. Persi & B. Scrosati Nanocomposite polymer electrolytes for lithium batteries Nature 394, 456-458 (1998).

A.M. Christie, S.J. Lilley, E. Stauton, Y.G. Andreev, P.G. Bruce, "Increasing the conductivity of crystalline polymer electrolytes" Nature, 433, 50 (2005).

D. MacFarlane, M. Forsyth, P. Meakin, N. Amini J. Phys. Chem. B 103, 4164 (1999).

G. B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Electrochim.Acta54, 1325 (2009).

Z. B. Zhou, H. Matsumoto, K. Tatsumi, Chem. Eur.J.12,2196(2006).

V. Koch, C. Nanjundiah, G. Appetecchi, B. Ser, J. ElectrochemSoc.142L116, (1995).

R. Marcilla, F. Alcaide, H. Sardon, J. A. Pomposo, C. Pozo-Gonzalo, D. Mecerreyes, Electrochem. Commun. 8,482 (2006).

Finkenstadt, V.L, Appl. Microbiol. Biotechnol, 67, 735-745 (2005).

N. Matsumi, K. Sugai, M. Miyake, H. Ohno, Macromolecules 39, 6924 (2006).

Published
2018-12-30
How to Cite
Cardoso, J., Nava, D., & Guzmán, G. (2018). Energy storage system and the use of electrolyte biopolymers. Contactos, Revista De Educación En Ciencias E Ingeniería, (110), 61 - 67. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/48
Section
Artículos