Nanopartículas metálicas soportadas como catalizadores
Keywords:
Heterogeneous catalysis; Metallic nanoparticles; MOFs; Metallic catalysts; supported metals
Abstract
Since its creation in 1987, the “heterogeneous catalysis” group, at the UAM-Iztapalapa, has developed research focused on the synthesis, development and evaluation of solid catalysts based on metals and metal oxides in diverse reactions such as the reforming of naphtha, oxidation of alcohols, transformation of glycerol, hydrodechlorination of dichloroethylene, among others. A historical chronology of the lines of research carried out is presented.
Downloads
Download data is not yet available.
References
Flores J. G., Aguilar-Pliego, J., Martín-Guaregua N., Ibarra I. A. y Sánchez- Sánchez M. Catal. Today, 394-396, 295 (2022); Idem Royal Society Chemistry Adv., 13, 27174 (2023); Idem Coord. Chem. Rev., 496, 215403 (2023).
Figueras R., Gómez R. y Primet M., Adv. Chem., Set., I_22, 480 (1973).
Grieve, K., Mulvaney, P. y Grieser, F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Current Opinion in Colloid and Interface Science, 5: 168-172 (2000). DOI: 10.1016/ S1359-0294(00)00050-9
Lu, A. H., Salabas, E. L. y Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and applications. Angew. Chem. Int. Ed., 46: 1222- 1244 (2007). https://doi.org/10.1002/ anie.200602866
López-Gaona A., De los Reyes José A., Aguilar J. y Martín N. React. Kinet. Mech. & Catal., 99 (1), 177 (2010); Idem React. Kinet. Mech & Catal., 101. 491 (2010); Idem, RMIQ, 11(3), 463 (2012).
Liu L. y Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079 (2018). https :// doi.org/10.1021/acs.chemr ev.7b007.
Martínez-Rico M., Aguilar-Pliego J., Gutiérrez-Arzaluz M., Viniegra-Ramírez M., Martín-Guaregua N. y Garcia-Ruiz M. RMIQ, 17 (2), 523 (2018); Idem JAR&T, 16, 511 (2018); Idem JMCS, 64 (4), 327 (2020).
Medintz, I. L., Uyeda, H. T., Goldman, E. R. y Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mat., 4: 435-446 (2005).
Martin N., Córdoba G., López-Gaona A. y Viniegra M. React. Kinet. & Catal. Lett., 44 381 (1991); Idem J. Mol. Catalysis, 58, 107 (1990); Idem React. Kinet. & Catal. Lett., 49 (2), 353 (1993); Idem, J. Molec. Catalysis, 96 (2), 155 (1995). https://doi. org/10.1016/1381-1169(94)00041-7.
Martín N., Viniegra M., Lima E. y Espinosa G. Ind. Eng. Chem. Res., 43, 1206 (2004); Idem, Catal Today, 107-108 (2005), 719-725; Idem, Ind. Eng. Chem. Res., 46, 4335 (2007); Idem, Materials Research Innovations, 14(2). 183-188 (2010).
Sapi András, Rajkumar T., Kiss Janos, Kukovecz Ákos, Kónya Zoltán y Somorjai Gabor A., Metallic Nanoparticles in Heterogeneous Catalysis, Catalysis Letters 151:2153–2175 (2021). https://doi. org/10.1007/s10562-020-03477-5
Shipway, A. N., Katz, E. y Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor application. Chem. Phys. Chem., 1: 18-52 (2000). https:// doi.org/10.1002/1439-7641(20000804 )1:1<18::AID-CPHC18>3.0.CO;2-L
Stair P. C. The concept of Lewis acids and bases applied to surfaces. J. Am. Chem. Soc., 104, 4044 (1982). https://doi. org/10.1021/ja00379a002
Thomas J. M. y Thomas W. J. Principles and practice of heterogeneous catalysis. VCH Alemania (1997).
Tsubota, S., Nakamura, T., Tanaka, K. y Haruta, M. (1998) Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catal. Lett., 56: 131-135. Zanella Rodolfo. Aplicación de los nanomateriales a la catálisis. Mundo Nano, 7 (12), 66 (2014).
Zhou Y., Yin Ch, Li Y. y Shen W. Dynamic behavior of metal nanoparticles for catalysis. Nanotoday, 20, 101-120 (2018). https://doi.org/10.1016/j.nantod. 2018.04.005.
Figueras R., Gómez R. y Primet M., Adv. Chem., Set., I_22, 480 (1973).
Grieve, K., Mulvaney, P. y Grieser, F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Current Opinion in Colloid and Interface Science, 5: 168-172 (2000). DOI: 10.1016/ S1359-0294(00)00050-9
Lu, A. H., Salabas, E. L. y Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and applications. Angew. Chem. Int. Ed., 46: 1222- 1244 (2007). https://doi.org/10.1002/ anie.200602866
López-Gaona A., De los Reyes José A., Aguilar J. y Martín N. React. Kinet. Mech. & Catal., 99 (1), 177 (2010); Idem React. Kinet. Mech & Catal., 101. 491 (2010); Idem, RMIQ, 11(3), 463 (2012).
Liu L. y Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079 (2018). https :// doi.org/10.1021/acs.chemr ev.7b007.
Martínez-Rico M., Aguilar-Pliego J., Gutiérrez-Arzaluz M., Viniegra-Ramírez M., Martín-Guaregua N. y Garcia-Ruiz M. RMIQ, 17 (2), 523 (2018); Idem JAR&T, 16, 511 (2018); Idem JMCS, 64 (4), 327 (2020).
Medintz, I. L., Uyeda, H. T., Goldman, E. R. y Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mat., 4: 435-446 (2005).
Martin N., Córdoba G., López-Gaona A. y Viniegra M. React. Kinet. & Catal. Lett., 44 381 (1991); Idem J. Mol. Catalysis, 58, 107 (1990); Idem React. Kinet. & Catal. Lett., 49 (2), 353 (1993); Idem, J. Molec. Catalysis, 96 (2), 155 (1995). https://doi. org/10.1016/1381-1169(94)00041-7.
Martín N., Viniegra M., Lima E. y Espinosa G. Ind. Eng. Chem. Res., 43, 1206 (2004); Idem, Catal Today, 107-108 (2005), 719-725; Idem, Ind. Eng. Chem. Res., 46, 4335 (2007); Idem, Materials Research Innovations, 14(2). 183-188 (2010).
Sapi András, Rajkumar T., Kiss Janos, Kukovecz Ákos, Kónya Zoltán y Somorjai Gabor A., Metallic Nanoparticles in Heterogeneous Catalysis, Catalysis Letters 151:2153–2175 (2021). https://doi. org/10.1007/s10562-020-03477-5
Shipway, A. N., Katz, E. y Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor application. Chem. Phys. Chem., 1: 18-52 (2000). https:// doi.org/10.1002/1439-7641(20000804 )1:1<18::AID-CPHC18>3.0.CO;2-L
Stair P. C. The concept of Lewis acids and bases applied to surfaces. J. Am. Chem. Soc., 104, 4044 (1982). https://doi. org/10.1021/ja00379a002
Thomas J. M. y Thomas W. J. Principles and practice of heterogeneous catalysis. VCH Alemania (1997).
Tsubota, S., Nakamura, T., Tanaka, K. y Haruta, M. (1998) Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catal. Lett., 56: 131-135. Zanella Rodolfo. Aplicación de los nanomateriales a la catálisis. Mundo Nano, 7 (12), 66 (2014).
Zhou Y., Yin Ch, Li Y. y Shen W. Dynamic behavior of metal nanoparticles for catalysis. Nanotoday, 20, 101-120 (2018). https://doi.org/10.1016/j.nantod. 2018.04.005.

Published
2025-01-27
How to Cite
N. Martín, Viniegra, M., Peralta, R., Aguilar, J. G., & Aguilar, J. (2025). Nanopartículas metálicas soportadas como catalizadores. Contactos, Revista De Educación En Ciencias E Ingeniería, (135), 58 - 69. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/488
Section
Artículos