Maximum drop in breakwater dikes of loose parts with S-profile
Abstract
This paper focuses on the evaluation of the rundown (Rd/H ) on the breakwaters with “S" prole (DRPS-S). A complete integral methodology is proposed, that starts with the definition of the “S" profile. Afterwards the necessary steps to the geometric design of a DRPS-S are presented. This methodology is presented in the par-paper (Evaluation of the runup, Ru), which focuses only on the analysis of the runup. Later, all the variables involved in the numerical modelling are presented. The numerical calculations, made with the software OpenFOAM®, allow the evaluation of the rundown originated by each proposed sea state. A statistical analysis of the obtained results was made, and a statistical fitted function that allows the evaluation of Rd/H as a function of Iribarren number ξ, is proposed. Finally, a comparison between the numerical results, and two mathematical formulations from the literature is made. Adjustment numerical-factors to these equations are proposed, which allows the evaluation of the rundown with major confidence for hese type of breakwaters.
Downloads
References
Ahrens, J.P. (1981). Irregular Wave Runup on Smooth Slopes. Coastal Engineering Technical Aid. No. 81-17. U.S. Army, Corps of Engineers: CERC, pp. 1-31.
Alc_erreca-Huerta, J.C. (2014). Processbased modelling of waves interacting with porous bonded revetments and their sand foundation. Technischen Universitat Carolo-Wihelmina zu Braunschweig. Ph.D-thesis. pp. 202.
Alc_erreca-Huerta, J.C. y Oumeraci, H. (2016). “Wave-induced pressures in porous bonded revetmetns. Part I: Pressures on the revetment". Coastal Engineering 110, 87 - 101.
Bruun, P. y Gunbak, A.R., (1976). “New Design Principles for Rubble Mound Structures". Coastal Engineering, 2429-2473.
Del Valle, J. (2017). Criterios para el diseño geométrico y mecánico de diques con sección en S. Evaluación de modos de falla. Facultad de Ingeniería, UNAM. Ph.Dthesis, pp. 181.
Del Valle, J., Mendoza, E., Alcérreca-Huerta, J.C., y Silva, R. (2018). “Evaluación del coeficiente de reflexión en diques rompeolas de piezas sueltas con perfil en S". Tecnología y Ciencias del Agua. (Aceptado 20/03/2018. En proceso de publicación)
Del Valle, J., y González-Vázquez, J.A. (2018). “Evaluación del ascenso máximo en diques rompeolas de piezas sueltas con perfil en S". XXVIII Congreso Latinoamericano de Hidráulica. Buenos Aires, Argentina. Septiembre, pp. 12.
Geuzaine, C. y Remacle, J.-F. (2014). Gmsh Reference Manual, pp. 257.
Goda, Y. (2000). Random seas and design of maritime structures, Singapore.
Hall, K, R. y Foster, D. N. (1990). “Internal and external pressure measurements in reshaped breakwaters". Coastal Engineering 14, 215-232.
Hsu, T.-J. Sakakiyama, T. y Liu, P.L.-F. (2002). A numerical model for wave motions and turbulence ows in front of a composite breakwater". Coastal Engineering, 46, pp. 25-50.
Jacobsen, N.G., Fuhrman, D.R. y Freds_e, F.J. (2012). A wave generation toolbox for the open-ource CFD library: OpenFOAM ®". International Journal for Numerical Methods in Fluids 70, pp. 1073-1088.
Jacobsen, N.G. (2017). Waves2Foam Manual, version 0.9. DRAFT Deltares. The Netherlands, pp. 75.
Jensen, B. Jacobsen, N.G. y Christensen, E.D. (2014). “Investigations on the porous media equations and resistance coef-_cients for coastal structures". Coastal Engineering, 84, pp. 56-72.
Losada, M.A. y Gimenez-Curto, L.A. (1981). “Flow characteristics on rough, permeable slopes under wave action". Coastal Engineering 4, 187-206.
Mendoza, E., Silva, R., Clavero, M. y Losada, M.A. (2010). “Evolución del comportamiento hidráulico y de la geometría de diques homogéneos al ser deformados por el oleaje". Tecnología y Ciencias del Agua 1, 21-35.
Silva, R. (2005). Análisis y descripción estadística del oleaje, SD/49. Instituto de Ingeniería, UNAM, M_exico, pp. 179.
Silva, R., Govaere, G., y Martin, F. (1998). “A statistical tool for breakwater design". Proceedings of the Conference American Society of Civil Engineers. Copenhagen, Denmark.
Whitaker, S. (1986a). “Flow in porous media I: a theoretical derivation of Darcy's law". Transport in porous Media 1, 3-25.
Whitaker, S. (1986b). “Flow in Porous Media II: the governing equations for inmiscible, two-phase ow". Transport in porous Media 1, 105-125.