Materiales compuestos por electrohilado para su uso en ingeniería de tejidos

  • María G. Flores Sánchez Vicerrectoría de Investigación, Universidad La Salle México
  • Roberto Olayo González Departamento de Física Universidad Autónoma Metropolitana Iztapalapa
Keywords: Electrospinning, Composite Biomaterials, Tissue Engineering

Abstract

This work shows the potential of the electrospinning technique in the generation of composite scaffolds and based on the parameters of this technique and the conditions of the precursor solution used, the result is structures made up of fibers with different diameters and pore sizes, capable of allowing the passage of cells and nutrients within the scaffold, suitable for allowing cell adhesion and proliferation; the characterization of these scaffolds is presented using techniques such as Scanning Electron Microscopy (SEM), Raman Microscopy, and through the analysis and distribution of pores using the ImageJ computer program.

Downloads

Download data is not yet available.

References

Jiyao Xing, Miao Zhang, Xinlin Liu, Chao Wang, Nannan Xu, Dongming Xing, Multi-material electrospinning: from methods to biomedical applications, Materials Today Bio, Volume 21, 2023, 100710, ISSN 2590-0064, https://doi.org/10.1016/j.mtbio.2023.100710.

Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. https://doi.org/10.3390/polym15112418.

Yang, C.; Shao, Q.; Han, Y.; Liu, Q.; He, L.; Sun, Q.; Ruan, S. Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. Appl. Sci. 2021, 11, 9082. https://doi.org/10.3390/app11199082.

Hadi Saniei, Sayedali Mousavi, Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity, Polymer, Volume 196, 2020,122467, ISSN 0032-3861, https://doi.org/10.1016/j.polymer.2020.122467.

Zhong H, Huang J, Wu J, et al. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Research, 2022, 15(2): 787-804. https://doi.org/10.1007/s12274-021-3593-7

Shi, Shuo & Si, Yifan & Han, Yanting & Iqbal, Mohammad Irfan & Fei, Bin & Li, Robert & Hu, Jinlian & Qu, Jinping. (2022). Recent Progress in Protective Membranes Fabricated Via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. Advanced Materials. 34. 2107938. 10.1002/adma.202107938.

Flores-Sánchez María G., Atlántida M. Raya-Rivera, Diego R. Esquiliano-Rendon, Patricia G. Ontiveros-Nevares, Nancy C. Islas-Arteaga, Juan Morales-Corona & RobertoOlayo (2018) Scaffolds of polylactic acid/hydroxyapatite coated by plasma with polypyrrole-iodinefor the generation of neo-tissue–bone in vivo: Study in rabbit, International Journal of PolymericMaterials and Polymeric Biomaterials, 67:7, 427-437, DOI: 10.1080/00914037.2017.1342249.

Zahra Khalilimofrad, Hadi Baharifar, Azadeh Asefnejad, Kamyar Khoshnevisan, Collagen type I cross-linked to gelatin/chitosan electrospun mats: Application for skin tissue engineering, Materials Today Communications, Volume 35, 2023, 105889, ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2023.105889.

Mohammad Hossein Mirmusavi, Mehdi Ahmadian, Saeed Karbasi, Polycaprolactone-chitosan/multi-walled carbon nanotube: A highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering, International Journal of Biological Macromolecules, Volume 209, Part B, 2022, Pages 1801-1814, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2022.04.152.

Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X (2018) Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the Basketweave pattern of collagen fibrils in native skin. Biomater Sci 6:340–349. https://doi.org/10.1039/c7bm00545h.

Pal P, Srivas PK, Dadhich P, Das B, Maulik D, Dhara S (2017) Nano- /microfibrous cotton-wool-like 3D scaffold with core-shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater Sci Eng 3:3563–3575. https://doi.org/10.1021/acsbiomaterials.7b00681

Chen S, Wang H, Su Y, John JV, McCarthy A, Wong SL, Xie J (2020) Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater 108:153–167. https://doi.org/10.1016/j.actbio.2020.03.035

Villarreal-Gómez, L.J.; Pérez-González, G.L.; Bogdanchikova, N.; Pestryakov, A.; Nimaev, V.; Soloveva, A.; Cornejo-Bravo, J.M.; Toledaño-Magaña, Y. Antimicrobial Effect of Electrospun Nanofibers Loaded with Silver Nanoparticles: Influence of Ag Incorporation Method. J. Nanomater. 2021, 2021, 9920755.

Chung C. and Burdick J. A., Engineering cartilage tissue, Advanced Drug Delivery Reviews. (2008) 60, no. 2, 243–262, https://doi.org/10.1016/j.addr.2007.08.027, 2-s2.0-36849028030, 17976858.

Irawan V., Sung T. C., Higuchi A., and Ikoma T., Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development, Tissue engineering and regenerative medicine. (2018) 15, no. 6, 673–697, https://doi.org/10.1007/s13770-018-0135-9, 2-s2.0-85057026834, 30603588.

Wise J. K., Yarin A. L., Megaridis C. M., and Cho M., Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage, Tissue Engineering Part A. (2009) 15, no. 4, 913–921, https://doi.org/10.1089/ten.tea.2008.0109, 2-s2.0 67049167743, 18767972.

Yan, B., Zhang, Y., Li, Z. et al. Electrospun nanofibrous membrane for biomedical application. SN Appl. Sci. 4, 172 (2022). https://doi.org/10.1007/s42452-022-05056-2.
Published
2025-11-10
How to Cite
Flores Sánchez, M. G., & Olayo González, R. (2025). Materiales compuestos por electrohilado para su uso en ingeniería de tejidos. Contactos, Revista De Educación En Ciencias E Ingeniería, (144), 34 - 45. Retrieved from https://contactos.izt.uam.mx/index.php/contactos/article/view/622
Section
Artículos